Conditions of Handling Confounding Variables in Dynamic Networks

Arne Dankers, Paul Van den Hof, Donatello Materassi and Harm Weerts

2017 IFAC World Congress, Toulouse, France, July 9-14

TU/

Technische Universiteit
Eindhoven
University of Technology

Introduction – dynamic networks

Decentralized process control

Power grid

Metabolic network

Distributed control (robotic networks)

Identification in dynamic networks

Confounding Variables

- Objective: Estimate G_{21}^0
- Suppose *w*₃ not measured
- w₂ is output
- w₁ is input

Problem: Noise between input and output is correlated. Estimate is not consistent.

Then v_3 is a confounding variable:

- Path from v_3 to output w_2 , and
- Path from v_3 to input w_1

that pass only through unmeasured nodes

Interesting Observation

- Objective: Estimate G_{32}^0
- w₂ is input
- w₃ is output
- Suppose w₄ is not measured (v₄ is a confounding variable)

Observation:

Including w_1 as an additional predictor input results in consistent estimates of G_{32}^0 .

Interesting Observation

- Objective: Estimate G_{32}^0
- w₂ is input
- w₃ is output
- Suppose w₄ is not measured (v₄ is a confounding variable)

Questions:

- Why does this work?
- Can we generalize this?

Example Revisited

 w_1 blocks the path from v_4 to w_2 w_2 can be partitioned as $w_2 = w_2^{(w_1)} + w_2^{(\perp w_1)}$ dependent Independent of v_{A} on v_4 G_{32}^0 can be consistently estimated using $w_2^{(\perp w_1)}$ as input, and w_3 as output (open loop identification problem)

Consistent estimates of G_{ji}^0 may be possible if all paths from confounding variables to predictor inputs w_k , $k \in A_j$ are blocked by additional inputs w_n , $n \in B_A$

Second Example

* Dankers and Van den Hof (2014), Dankers et al., TAC, 2016.

- Objective: Estimate G_{21}^0
- First: selection of input nodes
- Parallel paths w₁ → w₂ and loops around w₂ need to be blocked *

Select w_1 and w_5 as input

Suppose w_3 is not measured (v_3 is a confounding variable)

/ Electrical Engineering - Control Systems

Second Example

- Objective: Estimate G_{21}^0
- To block path from v₃ → w₅ can select either w₆ or w₄
- Try w_4 , and partition w_5 as $w_5 = w_5^{(w_4)} + w_5^{(\perp w_4)}$ dependent independent on v_3 of v_3 • Use $w_5^{(\perp w_4)}$ and w_1 as

predictor inputs

Does not work: $w_5^{(\perp w_4)}$ is independent of w_1 . $w_5^{(\perp w_4)}$ does not block parallel path from $w_1 \rightarrow w_2$

/ Electrical Engineering - Control Systems

Second Example

• Use w_6 , and partition w_5 as $w_5 = w_5^{(w_6)} + w_5^{(\perp w_6)}$ dependent Independent on v_3 of v_3

In this case $w_5^{(\perp w_6)}$ is not independent of w_1 $w_5^{(\perp w_6)}$ blocks parallel path from $w_1 \rightarrow w_2$

Conclude: using $w_5^{(\perp w_6)}$ and w_1 as predictor inputs results in a consistent estimate of G_{21}^0 !

Second Condition To Handle Confounders

Generalization:

- Let G_{ji}^0 denote module of interest
- Let w_k , $k \in A_j$ denote the basic set of predictor inputs
- Then additional inputs w_n , $n \in B_A$ should not block:
 - any parallel paths from $w_i \rightarrow w_j$
 - any loops $w_j \rightarrow w_j$

Third Example

Objective: Estimate G_{32}^0

- Choose w_2 as input
- w₃ is output
- Suppose w₄ and w₆ not measured (v₄ is a confounding variable)

Third Example

Objective: Estimate G_{32}^0

- Choose w_2 as input
- w₃ is output
- Suppose w_4 and w_6 not measured (v_4 is a confounding variable)

 w_1 blocks path from $w_4 \rightarrow w_2$ select w_1 as an additional predictor input.

Third Example

partition w_2 : $w_2 = w_2^{(w_1)} + w_2^{(\perp w_1)}$

Problem:

- For partitioning w_2 we need to estimate G_{21}^0
- Estimating G_{21}^0 suffers from a "new" confounding variable v_6

Select w_5 as another additional input variable in order to consistently estimate the partitioning of w_2 .

Sequence of Linked Confounders

$$v_{z_2} \rightarrow w_1, \quad v_{z_2} \rightarrow w_2$$

only passing through non-measured nodes

Sequence of Linked Confounders

There is a sequence of linked confounders between w_i and w_i v_4 induced by B_A if there exists a set of non-measured nodes w_{z_i} such that $v_{z_1} \rightarrow w_j, \ v_{z_1} \rightarrow w_{\ell_1}$ $v_{z_2} \rightarrow w_{\ell_1}, \ v_{z_2} \rightarrow w_{\ell_2}$ v_1 $v_{z_3} \rightarrow w_{\ell_2}, v_{z_2} \rightarrow w_{\ell_3}$ G_{21}^{0} **7**32 v_5 v_2 v_3 $v_{z_n} \to w_{\ell_n}, v_{z_n} \to w_i$ for $w_{\ell_1} \in B_A$, and all paths passing through non-measured nodes only. v_6

Implementation

Objective: estimate G_{ji}^0

- **1. Select variables that**
 - 1. Block all parallel paths from $w_i \rightarrow w_j$
 - 2. Block all loops from $w_j \rightarrow w_j$

Denote this set of variables w_k , $k \in A_j$

- 2. If there are confounding variables present, select a set B_A of additional variables that
 - 1. Block paths from confounding variables to w_i or w_j
 - 2. Does not block parallel paths or loops around w_i , and
 - 3. Does not induce a sequence of linked confounders
- **3.** Minimize the prediction error:

$$\varepsilon(t,\theta) = H^{-1}(q,\theta)(w_j - \sum_{k \in D_j} G_{jk}(q,\theta)w_k),$$

where $D_j = A_j \cup B_A$

- Confounding variables can be effectively handled by selecting additional measured predictor inputs
- Graph-property is closely related to the notion of d-separation for Directed Acyclic Graphs (Pearl, 2000)
- Alternative solutions (Van den Hof et al., CDC 2017, submitted)

