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The message
 In prediction error identification, quantified model
uncertainty is usually based on
pdf of estimator z — 8

+ “Exact” probabilistic expressions on f§; — g are
approximated by:

« Employing asymptotic Gaussian distribution
¢ Obtaining P through Taylor approximation (OE/BJ)
« Replacing covariance matrix by estimate

« Probabilistic parameter uncertainty regions can be

obtained without specifying the estimator pdf,
with attractive results even for nonlinear estimators
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The current status

« In prediction error identification, model uncertainty
bounds are necessary (reliability, robustness)

« Probabilistic bounds based on covariance P of estimator,
together with (asymptotic) normal distribution

 For linear parametrizations (FIR,ARX) and & & A
exact and explicit expression for P is available

¢ For nonlinear parametrizations (OE,BJ) approximations
are necessary (e.g. Taylor expansion)

e For & & A results can be obtained only for linear
parametrizations (FIR, ORTFIR)
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Example
Data generating system: y = 6px1 + =2
x> € N(0,2); 1 correlated with zo
Estimator: 6 =y/x1 =09+ x2/x1
pdf of € is very hard to analyze
However: x1(0 —6g) = x> € N'(0,2)
After one experiment we have realizations: z1, 0 of x1,60
Then z1(8 — ) is a realization of z» € N(0, 2).

Based on test statistic z1(9 — @) we select all § that
are within the a-probability level of x> :
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classical:
Fixed (symmetric) pdf(8)
interval is estimated
from data

interval varies
with experiment

probability density p o
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Cost: not necessarily 3
smallest interval 1 2 3 4 5 6
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0o €{0 | (0-0)23(0-0) <2cx(a, 1)} wp. «

Probabilistic parameter bounding without pdf of estimator

Employ statistical properties of random variable
x1(0 — 0p) = x> € N(0,2)

rather than those of
0 — 6o

Benefit = simplicity of expression
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ARX modelling

Gttt —1;0) = T (¢)6
With __-"[1:.
&= ]and v =[uil} -glvy?
2T (N
Oy = (®To) toly

If & M: y=P0g+e

Oy — 6o = (7o) 1oTe
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ARX modelling
85 EM: Oy —0p=(dTd) 1ole
Classical approach:
\/N(gN - 00) - N(Oa Parz)
Parg = (]E[%@Tcp])—l -o2
0o € {0 | Oy — 0)Pri(On — 0) < ex(a,n)/N} wop. a

Requires:
- (asymptotic) normality of (<DT¢)_1¢LTe
« Replacement of Py, by an estimate Py
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ARX modelling

. 1 ~ 1
Consider B := W(DTQD(ON —6p) = ﬁ(bTe'

—N(0,Q) Q= E[%dﬂb] 02
Result

~ _ ~ cy(a,n
6o € {0 | (On — )T PLL (O —0) < %} W.p.a

. 1 T —1 1 T —1
P, = (—d' b — Pt P
with FParz,n (N ) Q(N )

Requires:

« (asymptotic) normality of d7e

« Replacement of Q by an estimate
(T
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ARX modelling
If S €M Oy — 0= (To) tole
Alternative:

1

_ 1
T (0 — 0g) = —dTe.
TN (O — 00)

VR
SN(0,Q) Q@=El o] o2

Consider S :
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ARX modelling

Implementable scheme:
1 1 ~
Replace Q =E[-oT®] . o2py —oTd52
N 1 N
Then Par$7’n, = (NCDTCD)_]'&S
Same expression as used in the classical situation

Result is related to likelihood method, determined by

{01 Viv(0) = Viv(Ox) < ex(,n)/N}

.
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ARX modelling

Implementable scheme:
1 1
Replace Q= ]E[N¢T<1>] -2 by N¢T¢ag
~ 1 1
Then Para:,n - (NCDTQD) 10'62

Same expression as used in the classical situation

Conclusion

Classical results with P,,, approximated by sample
estimates, has stronger theoretical support
than often considered.
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Simulation example:
First order ARX system:

0.5
O PO

1+ o.9q—1”(t)

identified with 1st order ARX model.
Compare empirical distributions of
Oy — 00 = (7o) 1oTe
and —0Te
WY
for different values of N,
on the basis of 5000 Monte Carlo simulations
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Component related to numerator parameter:

N=2 N=5 N=25 N =50
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Component related to denominator parameter:

N=2 N=5 N =25 N =50
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OE modelling

B(q,0)
a.0)"®

Then V3, (6n5) = O can be written as

N
3 X W0~ R0 5 0y) = 0

gt —1;0) =

ol 0 = :.';1(.' t—1;d]
[

and

N
Z [F(q,0n)yr(t)—B(q,05)up(t)]-4(t,0y) =0

=zl

with up(t) = Flg. Gy )7 yit): up(t) = Flg, fx ) ult)
(= |
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OE modelling

Linear regression type of equation; solution satisfies

= (wlo)tulyp

Not fit for parameter estimation, since r.h.s. is parameter-
dependent.

However since r.h.s. is known once Oy is determined,
similar uncertainty analysis can be made as for ARX

With yp = ®bg + ep

1 WY h. - = L oyr
1 R
nesc L FfuDelft

OE modelling

Linear regression type of equation; solution satisfies

A T —1,7T
o oy = (WTo) wlyp
with
&7 = [LE(1, 8y, - - EIN, By s T = (2701, )TN, By
S ) = [—pplt—1)-—ppft—ng) uple)-mp(t-ng+1]

N
—| & S 0n)ur(O—Ba, On)ur(D]v(t,0y) = 0
t=1

with uplt) = Flg. Gy )7 yit): up(t) = Flg, iy ) ult)
‘(= |
DCSC

Delft Center for Systems and Control #unelft

OE modelling
0o € {9| (On — 0) Pl —0) < WN”)} w.p. a

— (L uTeyv-1o0 Loyt — a2 gl le”
Poe,n—(ﬁw ) Q(ﬁq’ W), =g Rl W)

Requires:

« (asymptotic) normality of W e W

* Replacement of Q by an estimate

* No 1st order Taylor approximation involved

ical: 1 _
Classical: Py, = UE[ENW(GO)TW(QO)] 1
R
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Simulation example:
First order OE system:
0.5
y(t) = Wu(t) +e(?)
identified with 1st order OE model.
Compare empirical distributions of
On—00 = (WTo) twTlep
1

= | LR T

(T
for different values of N,

on the basis of 5000 Monte Carlo simulations

and
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Component related to denominator parameter:
N=2 N=5 N=25 N =50
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Component related to numerator parameter:
N=2 N=5 N =25 N =50
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Summary

» There is an alternative paradigm for parameter uncertainty
bounding, without constructing pdf of estimator

« Applicable to ARX, OE and also BJ models
« Leading to simpler and less approximative expressions
= Can be extended to OE models, even when <& & JAAd

< Relation with Bayesian and likelihood based uncertainty
intervals needs to be explored
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One step further
(WTo)(Oy — o) = Wep
with svd: WT' = y=v7T it follows that
s T (W) (0 — 0g) = VDep

Lemma:

If VT unitary and random, and e Gaussian with cov(e)=02 I,
and VT and e independent, then Ve is Gaussian with

Cov =021.

This would suggest that VTeF is Gaussian for any value of N.

Only (2" order) effect: V1 and ep both depend on A
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