

Example

Delft Center for Systems and Control

Data generating system: $y = \theta_0 x_1 + x_2$ $x_2 \in \mathcal{N}(0,2); \ x_1$ correlated with x_2 Estimator: $\theta = y/x_1 = \theta_0 + x_2/x_1$ pdf of θ is very hard to analyze However: $x_1(\theta - \theta_0) = x_2 \in \mathcal{N}(0, 2)$ After one experiment we have realizations: $x_1, \hat{\theta}$ of x_1, θ Then $x_1(\hat{\theta} - \theta_0)$ is a realization of $x_2 \in \mathcal{N}(0, 2)$. Based on test statistic $x_1(\hat{\theta} - \tilde{\theta})$ we select all $\tilde{\theta}$ that are within the α -probability level of x_2 : DCSC **TU**Delft

ARX modelling		
$\begin{split} \hat{y}(t t-1;\theta) &= \varphi^T(t)\theta \\ \text{With} \Phi &= \begin{pmatrix} \varphi^T(1) \\ \vdots \\ \varphi^T(N) \end{pmatrix} \text{ and } \mathbf{y} &= [\mathbf{y}(1) \cdot \\ \hat{\theta}_N &= (\Phi^T \Phi)^{-1} \Phi^T \mathbf{y} \end{split}$	$\cdot \cdot y(N)]^T$	
If $\mathcal{S} \in \mathcal{M}$: $\mathbf{y} = \Phi \theta_0 + \mathbf{e}$		
$\widehat{ heta}_N - heta_0 = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{e}$		
DICISIC Defit Center for Systems and Control	fuDelft	

ARX modelling	
If $\mathcal{S} \in \mathcal{M}$: $\widehat{ heta}_N - heta_0 = (\Phi^T \Phi)^{-1} \Phi$	$\mathbf{P}^T \mathbf{e}$
Classical approach: $\sqrt{N}(\hat{\theta}_N - \theta_0) \rightarrow \mathcal{N}(0, P_{arx})$ $P_{arx} = (\mathbb{E}[\frac{1}{N}\Phi^T\Phi])^{-1} \cdot \sigma_e^2$ $\theta_0 \in \left\{\theta \mid (\hat{\theta}_N - \theta)P_{arx}^{-1}(\hat{\theta}_N - \theta) \le c_{\chi}\right\}$) $_{c}(lpha,n)/N \}$ w.p. $lpha$
Requires: • (asymptotic) normality of $(\Phi^T \Phi)^{-1} \Phi^T e$ • Replacement of P_{arx} by an estimate \hat{P}_{arx}	
DCSC Delft Center for Systems and Control	Ť∪Delft

ARX modelling

$$Consider \quad \beta := \frac{1}{\sqrt{N}} \Phi^T \Phi(\hat{\theta}_N - \theta_0) = \frac{1}{\sqrt{N}} \Phi^T e.$$

$$\rightarrow \mathcal{N}(0, Q) \quad Q = \mathbb{E}[\frac{1}{N} \Phi^T \Phi] \cdot \sigma_e^2$$
Result

$$\theta_0 \in \left\{ \theta \mid (\hat{\theta}_N - \theta)^T P_{arx,n}^{-1}(\hat{\theta}_N - \theta) \le \frac{c_{\chi}(\alpha, n)}{N} \right\} \text{ w.p.}\alpha$$
with $P_{arx,n} = (\frac{1}{N} \Phi^T \Phi)^{-1} Q(\frac{1}{N} \Phi^T \Phi)^{-1}$
Requires:
• (asymptotic) normality of $\Phi^T e$
• Replacement of Q by an estimate

ARX modelling
If
$$S \in \mathcal{M}$$
: $\hat{\theta}_N - \theta_0 = (\Phi^T \Phi)^{-1} \Phi^T e$
Alternative:
Consider $\beta := \frac{1}{\sqrt{N}} \Phi^T \Phi(\hat{\theta}_N - \theta_0) = \frac{1}{\sqrt{N}} \Phi^T e$.
 $\rightarrow \mathcal{N}(0, Q) \quad Q = \mathbb{E}[\frac{1}{N} \Phi^T \Phi] \cdot \sigma_e^2$
 $\rightarrow \mathcal{N}(0, Q) \quad Q = \mathbb{E}[\frac{1}{N} \Phi^T \Phi] \cdot \sigma_e^2$

Replace	$Q = \mathbb{E}[\frac{1}{N}\Phi^{T}\Phi] \cdot \sigma_{e}^{2} \text{ by } \frac{1}{N}\Phi^{T}\Phi\hat{\sigma}_{e}^{2}$
Then	$\hat{P}_{arx,n} = (\frac{1}{N} \Phi^T \Phi)^{-1} \hat{\sigma}_e^2$
Same ex	pression as used in the classical situation
Result is	related to likelihood method, determined by $\left\{ heta \mid V_N(heta) - V_N(\widehat{ heta}_N) \leq c_\chi(lpha,n)/N ight\}$

OE modelling	
$\widehat{y}(t t-1; heta) = rac{B(q, heta)}{F(q, heta)} u(t)$	
Then $V_N'(\widehat{ heta}_N)=$ 0 can be written as	
$\frac{1}{N}\sum_{t=1}^{N}[y(t) - \frac{B(q, \hat{\theta}_N)}{F(q, \hat{\theta}_N)}u(t)] \cdot \psi(t, \hat{\theta}_N) = 0$	
$\psi(t, \theta) = \frac{\partial}{\partial \theta} \hat{y}(t t - 1; \theta)$	
and $\frac{1}{N}\sum_{t=1}^{N} [F(q,\hat{\theta}_N)y_F(t) - B(q,\hat{\theta}_N)u_F(t)] \cdot \psi(t,\hat{\theta}_N) = 0$	
with $y_F(t) = F(q, \hat{\theta}_N)^{-1} y(t); u_F(t) = F(q, \hat{\theta}_N)^{-1} u(t)$	
17	
Deff Center for Systems and Control	

Summary	
 There is an alternative paradigm for parameter uncertainty bounding, without constructing pdf of estimator 	
Applicable to ARX, OE and also BJ models	
Leading to simpler and less approximative expressions	
- Can be extended to OE models, even when $ \mathcal{S} \notin \mathcal{M} $	
 Relation with Bayesian and likelihood based uncertainty intervals needs to be explored 	
24	
DCSC Delft Center for Systems and Control	

One step further $(\Psi^T \Phi)(\hat{\theta}_N - \theta_0) = \Psi^T \mathbf{e}_F$ With svd: $\Psi^T = U\Sigma V^T$ it follows that $\Sigma^{-1} U^T (\Psi^T \Phi)(\hat{\theta}_N - \theta_0) = V^T \mathbf{e}_F$	
<i>Lemma:</i> If V ^T unitary and random, and e Gaussian with $cov(e) = \sigma^2 I$, and V ^T and e independent, then V ^T e is Gaussian with $Cov = \sigma^2 I$.	
This would suggest that $V^T \mathbf{e}_F$ is Gaussian for any value of N. Only (2 nd order) effect: V^T and \mathbf{e}_F both depend on $\hat{\theta}_N$	
DCSC Delft Center for Systems and Control	₅ tuDelft