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The current status
• In prediction error identification, model uncertainty 

bounds are necessary (reliability, robustness)
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• For nonlinear parametrizations (OE,BJ) approximations 
are necessary (e.g. Taylor expansion)

• Probabilistic bounds based on covariance P of estimator, 
together with (asymptotic) normal distribution

• For linear parametrizations (FIR,ARX) and              
exact and explicit expression for P is available

• For              results can be obtained only for linear 
parametrizations (FIR, ORTFIR)
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The message
• In prediction error identification, quantified model 

uncertainty is usually based on 
pdf of estimator

Delft Center for Systems and Control

• Probabilistic parameter uncertainty regions can be 
obtained without specifying the estimator pdf,       
with attractive results even for nonlinear estimators

• “Exact” probabilistic expressions on             are 
approximated by:
• Employing asymptotic Gaussian distribution
• Obtaining P through Taylor approximation (OE/BJ)
• Replacing covariance matrix by estimate
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Example 
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Data generating system:

Estimator: 

pdf of    is very hard to analyze

However:

After one experiment we have realizations: 
Then                  is a realization of  
Based on test statistic                 we select all      that
are within the α-probability level of 
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Employ statistical properties of random variable

rather than those of 

Benefit = simplicity of expression

Probabilistic parameter bounding without pdf of estimator
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interval varies
with experiment

classical:
Fixed (symmetric)
interval is estimated
from data  

pdf(  )

Cost: not necessarily
smallest interval
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ARX modelling

With

If             : 
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ARX modelling

If             : 

Classical approach:

Requires:
• (asymptotic) normality of
• Replacement of         by an estimate 

10

Delft Center for Systems and Control

ARX modelling
If             : 

Alternative:

Consider
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ARX modelling
Consider

with

Result

Requires:
• (asymptotic) normality of
• Replacement of Q by an estimate 
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ARX modelling
Implementable scheme:  

Replace                                 by  

Then

Same expression as used in the classical situation

Result is related to likelihood method, determined by
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ARX modelling

Conclusion

Classical results with Parx approximated by sample 
estimates, has stronger theoretical support
than often considered.

Implementable scheme:  

Replace                                 by  

Then

Same expression as used in the classical situation
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Simulation example:

First order ARX system:

identified with 1st order ARX model. 

Compare empirical distributions of 

and

for different values of N, 
on the basis of 5000 Monte Carlo simulations
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Component related to numerator parameter:

-500 0 500

N = 2

( Φ
Φ

T )-1
Φ

T e

-2 0 2

V
T e

-2 0 2

N = 5

-2 0 2

-1 0 1

N = 25

-2 0 2

-0.5 0 0.5

N = 50

-2 0 2

16

Delft Center for Systems and Control

Component related to denominator parameter:
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OE modelling

Then                     can be written as  

and  

with
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OE modelling

with

Linear regression type of equation; solution satisfies
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OE modelling
Linear regression type of equation; solution satisfies

Not fit for parameter estimation, since r.h.s. is parameter-
dependent.
However since r.h.s. is known once       is determined,
similar uncertainty analysis can be made as for ARX

With
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OE modelling

Classical:

Requires:
• (asymptotic) normality of
• Replacement of Q by an estimate 
• No 1st order Taylor approximation involved
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Simulation example:

First order OE system:

identified with 1st order OE model. 

Compare empirical distributions of 

and

for different values of N, 
on the basis of 5000 Monte Carlo simulations
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Component related to numerator parameter:
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Component related to denominator parameter:
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Summary

• There is an alternative paradigm for parameter uncertainty
bounding, without constructing pdf of estimator

• Applicable to ARX, OE and also BJ models

• Can be extended to OE models, even when                    

• Relation with Bayesian and likelihood based uncertainty
intervals needs to be explored

• Leading to simpler and less approximative expressions 
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One step further

With svd:                         it follows that

Lemma:
If VT unitary and random, and e Gaussian with cov(e)=σ2 I,
and VT and e independent, then VTe is Gaussian with 
Cov = σ2 I. 

This would suggest that            is Gaussian for any value of N.

Only (2nd order) effect:        and        both depend on


