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Identification of local models in interconnected systems –
confounding variables, data-informativity and MATLAB toolbox
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Dynamic network setup – Module framework
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• Estimate or validate a single module/subnetwork 
(known topology)

• Estimate or validate the full network
• Estimate or validate the topology
• Identifiability
• Detect a fault and diagnose its location 
• Exploit active probing (experiment design)
• User prior knowledge of modules/topology
• Scalable algorithms

Sensor locations:

Many data-analytics and data-driven 
modeling challenges appear

Actuator locations:



Dynamic network setup 
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Collecting all equations:

[1] J. Gonçalves and S. Warnick, IEEE TAC, 2008.
[2] VdH et al., Automatica, 2013.
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Single module identification



Single module identification
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For a network with 
known topology:

• Identify        on the basis of 
measured signals

• Which signals to measure? 
Preference for local 
measurements

• When is there enough 
excitation / data informativity?



Indirect  methods [1,2,3]

• Rely on mappings      
and on sufficient excitation
signals  

Single module identification
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Different types of methods:

Direct methods [1,2,4]

• Rely on mappings      
and use excitation from both

and     signals  

[3] M. Gevers et al., SYSID 2018.
[4] K.R. Ramaswamy et al., IEEE-TAC, 2021.[2] A.G. Dankers et al., IEEE-TAC, 2016.

[1] PVdH et al., Automatica, 2013.
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Single module identification -

local direct method



Single module identification
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Local direct method:
(consistency and minimum variance properties)

Select a subnetwork: 
• Predicted outputs: 
• Predictor inputs:
such that prediction error minimization leads to
an accurate estimate of 

Note: same node signals can appear in input and output



Single module identification
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Conditions for arriving at an accurate (consistent) model estimate:

1. Module invariance:                     when removing discarded nodes (immersion)  

2. Handling of confounding variables 

3. Data-informativity
4. Technical condition on presence of delays (avoiding algebraic loops)
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[1] Dankers et al., TAC 2016
[3] Shi et al., Automatica 2022 

All parallel paths, and loops around the output, 
should be ”blocked” by a measured node that is present in 

Single module identification  - module invariance

A sufficient condition for module invariance:

All other signals can be removed/immersed from the network[2]

Alternative graph-based formulation in terms of disconnecting sets in [3]
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[2] Generalizations available in Linder&Enqvist (2017), Weerts et al, (2020)



Single module identification - confounding variables

12

w1 w2

wc

G21

vc

0

0Confounding variables [1][2]: 
Unmeasured signal that has (unmeasured) paths to both the 
input and output of an estimation problem. 

[1] J. Pearl, Stat. Surveys, 3, 96-146, 2009
[2] A.G. Dankers et al., Proc. IFAC World Congress, 2017.

In networks they can appear in two different ways:

w1 w2

w7

G21

G27

v1 v2

r1

0

0
w6 G26

v6
0

w3 G23
v3

0

Direct:
• If disturbances on inputs and outputs are correlated.

Indirect:

• If non-measured in-neighbors of an output affect signals in
the inputs. 
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In identification we know how to handle 
correlated disturbances: we model them! 

Solution:

• Direct confounding variables

e.g.,     is correlated with 

Include      as output and use a multivariate 
noise model



Confounding variables
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Non-measurable       is a confounding variable

Two possible solutions:

add predictor output2. Predict too  

1. Include add predictor input 

• Indirect confounding variable:

• There are degrees of freedom in choosing the predictor model



Local direct method
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General setup: 
Target module

Different algorithms for satisfying the 2 conditions (module invariance and conf. var.):   

• Full input case: include all in-neighbors of
• Minimum node signals case : maximize number of outputs
• User selection case (inputs first) : dedicated choice based on measurable nodes 
• User selection case (outputs first) : dedicated choice based on measurable nodes  

[1] A.G. Dankers et al., TAC 2016. 
[2] K.R. Ramaswamy et al., TAC 2021.
[3] S. Shi et al., IFAC 2023.



Different strategies – direct method

16

Network with 𝑣𝑣1 correlated with 𝑣𝑣3 and 𝑣𝑣6.
𝑣𝑣4 correlated with 𝑣𝑣5. 
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Full input:

Minimum input:

User-selection:

All achieving
consistency / ML properties
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Serious degrees of freedom in selecting the 
predictor model to satisfy the first two conditions:

1. Module invariance – PPL test

2. Handling confounding variables

3. Data-informativity

While presuming that data-informativity can always 
be satisfied by adding sufficient # of r-signals.



Single module identification – data-informativity
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Original network model:

[1] K.R. Ramaswamy et al., IEEE-TAC, 2021.

Incorporating the role of external signals:

Predictor model (subset of nodes):

Effect of     on       can appear in three different ways:

1. Incorporated in input

2. With a dynamic term
3. With a constant unit-term in     (binary matrix) 



Single module identification – data-informativity
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Examples for different roles of u: 

Dynamic term          can be left unmodelled  higher level of ``disturbances’’  
Alternative: estimate the term with measured input  



Single module identification – data-informativity
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Determining the different roles of excitation signals:

Given      and     , the sets     and      are determined through graphical conditions[1,2,3]:

• For             ,                 if all loops around       pass through a node in  

[1] Simple case where set 
[2] Ramaswamy, PhD thesis 2022; 
[3] VdH et al, IFAC 2023. 

• if all loops around       pass through a node in       and all paths from                       
to        pass through a node in      .

• if 

• For                         ,                 if        has a direct or unmeasured path to      



Single module identification – data-informativity
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Predictor model equation:

Typical data-informativity condition: 

[2] K.R. Ramaswamy et al., IEEE-TAC, 2021.

for almost all

inputs of the predictor model 

Rank-based condition can generically be satisfied based on a graph-based condition

[1] L. Ljung, 1989.



Data informativity (path-based condition)
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[1] Van der Woude, 1991
[2] Hendrickx, Gevers & Bazanella, CDC 2017, TAC 2019.

persistently exciting holds generically if there are 
vertex disjoint paths between external signals            and                                     

[3] VdH et al., CDC 2020.

Equivalently:  
vertex disjoint paths between                             and  

A signal                               with     persistently exciting, 
is persistently exciting iff has full row rank.  

This condition can be verified in a generic sense,  
by considering the generic rank of     [1],[2] 

linking to the maximum number of vertex disjoint paths between inputs and outputs 



Every node signal in       requires an excitation in
having a 1-transfer to  

Data informativity (path-based condition)
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Specific result for networks with full rank disturbances: 

• For every node in        we need a u-excitation

• More expensive experiments with growing # outputs

• A node         whose excitation appears in        can never be sufficiently excited



Every node signal in       requires an excitation in
having a 1-transfer to  

Data informativity (path-based condition)
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Specific result for networks with full rank disturbances: 

Additional condition for a node       to be effectively ``excitable’’: 

Every loop around a node in        should be blocked by a node in       .  

This additional graph-based condition needs to be integrated in 
the predictor model algorithms

[1] VdH et al., IFAC 2023 



Single module identification – direct method
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Conditions for arriving at an accurate model:

1. Module invariance: 

2. Handling of confounding variables 

3. Data-informativity
4. Technical conditions on presence of delays

Path-based conditions on the 
network graph 



Single module identification – direct method
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Are we done……?? Are there alternatives that can do the job with 
smaller # excitation signals?
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Single module identification -

multi-step method



2-node example 

28

Target: identify          with direct method 

Predictor model: 

Neither       nor       can contribute to       data informativity condition is not satisfied

Step 1:

Step 2: Change predictor model to:

Both       and       contribute to       data informativity condition is satisfied

Both      and      need to be present, while an indirect method requires only      ! 



Single module identification – multi-step method
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Confounding variable handling leads to multi-output models, that appear to be 
costly in terms of required excitation

Alternative multi-step method  -
originally developed for full network identification[1] as computationally attractive. 

[1] Fonken et al., Automatica 2022

Principle steps[2]: 

1. Choose a selection of nodes       such that the PPL condition is satisfied 
2. Immerse all other nodes
3. Estimate a high order ARX model for the mapping                 in the immersed network

4. Use the estimated model to reconstruct the innovation signal
5. Use the reconstructed innovation as a measured input in a parametric estimation

[2] Fonken et al., CDC 2023; Poster I-5 ERNSI 2023. 

6. Always ending up with a MISO predictor model



Single module identification – multi-step method
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Alternative way of confounding variable handling

[1] Fonken et al., Automatica 2022
[2] Fonken et al., CDC 2023; Poster I-5 ERNSI 2023. 

Relaxed data-informativity conditions:

Local direct methodMulti-step method

for almost all

: in-neighbors of       in immersed model : subset of 

Smaller dimension of     leads to less excitation signals required ! 



2-node example – multi-step method 
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Target: identify 

Predictor model in final step: 

Exciting       through either       or         is sufficient for data informativity

with reconstructed 
as additional predictor model inputs. 
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SYSDYNET 

MATLAB App and Toolbox



Algorithms implemented in SYSDYNET App and Toolbox
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Version beta-0.2.0, September 2023, to be downloaded from www.sysdynet.net

Structural analysis and operations 
on dynamic networks

• Edit and manipulate
• Assign properties to nodes

and modules
• Immersion of nodes, PPL test
• Generic identifiability analysis 

and synthesis
• Predictor model selection for

single module ID

to be complemented with
• estimation algorithms for

single module and 
full network ID;

• topology estimation

http://www.sysdynet.net/


Summary
• All conditions for a consistent module estimate can be formulated (in the 

generic case) in terms of path-based conditions that the predictor model 
should satisfy.

• Data-informativity has to be taken into account and requires its own set 
of conditions.

• There is room for flexibility in terms of sensor/actuator placement

• The multi-step method provides remarkable advantages in terms of 
excitation requirements

• All algorithms implemented in the Matlab App/Toolbox

34
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The end
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