Multi-step scalable least squares method for network identification with unknown disturbance topology

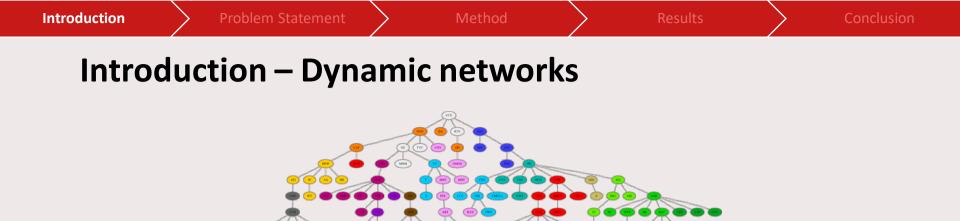
40th Benelux Meeting on Systems and Control

Rotterdam, the Netherlands, 29 June 2021

Stefanie Fonken, Karthik Ramaswamy, Paul Van den Hof

Contents

- Introduction Dynamic Networks
- Problem statement
- Developed method
- Simulation Results
- Conclusion



nuclear power plant

Smart Grid

www.betterworldsolutions.eu

Factories

ecological vehicle

Homes HI

Cities and offices

Thermal power plant

Renewable energy Photovoltaic

Wind generator

hydraulic power

TU/e

generation

Materassi and Innocenti, IEEE TAC, 2010

3 Benelux Workshop on Systems and Control, 2021, Stefanie Fonken

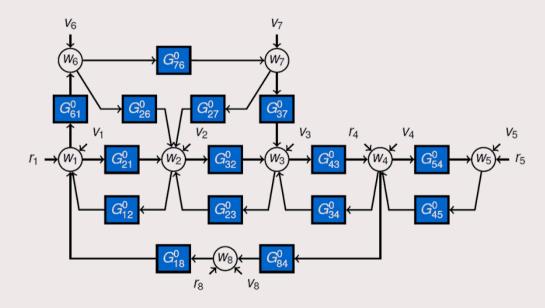
Vandereyken et al., Frontiers in plant science, 2018

B Protein-protein interaction network

A Gene regulatory network

Introduction - Dynamic networks

- G⁰_{ij} : modules, Linear-time-invariant (LTI) transfer function
- *w*(*t*) : nodes
- r(t) : external excitation signals
- $v(t) = H^0 e(t)$: process noise



Dankers et al., Computers & Chemical Engineering, 2018.

- Detection of network topology ^[1]
- Identification of modules in a dynamic network ^[2]
 - Local
 - Full

Introduction

 V_3 r_4 V_4 V_5 r_8 Va

Networks are increasing in size and complexity

Thus there is a need for scalable and accurate identification methods

5 Benelux Workshop on Systems and Control, 2021, Stefanie Fonken

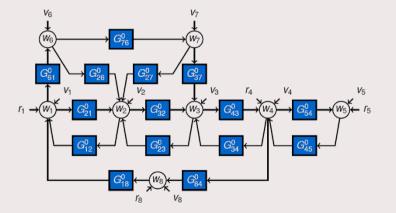
[1] Materassi et al., 2008, 2010, 2012, Chiuso et al., 2012. Shi et al., 2019.
[2] Van den Hof et al., 2013.
Dankers et al., 2015, 2016. Everitt et al., 2018. Galrinho et al.
2017, 2018, 2019. Weerts et al., 2017, 2018.

Method

Dynamic network setup

$$\begin{bmatrix} w_1(t) \\ w_2(t) \\ \vdots \\ w_L(t) \end{bmatrix} = \begin{bmatrix} 0 & G_{12}^0(q) & \dots & G_{1L}^0(q) \\ G_{21}^0(q) & 0 & \ddots & G_{2L}^0(q) \\ \vdots & \ddots & \ddots & \vdots \\ G_{L1}^0(q) & G_{L2}^0(q) & \dots & 0 \end{bmatrix} \begin{bmatrix} w_1(t) \\ w_2(t) \\ \vdots \\ w_L(t) \end{bmatrix} + R^0(q) \begin{bmatrix} r_1(t) \\ r_2(t) \\ \vdots \\ r_K(t) \end{bmatrix} + \begin{bmatrix} v_1(t) \\ v_2(t) \\ \vdots \\ v_L(t) \end{bmatrix}$$

$$w = G^0 w + R^0 r + v$$
$$w = G^0 w + R^0 r + H^0 \epsilon$$



Dynamic network setup

$$\begin{bmatrix} w_1(t) \\ w_2(t) \\ \vdots \\ w_L(t) \end{bmatrix} = \begin{bmatrix} 0 & G_{12}^0(q) & \dots & G_{1L}^0(q) \\ G_{21}^0(q) & 0 & \ddots & G_{2L}^0(q) \\ \vdots & \ddots & \ddots & \vdots \\ G_{L1}^0(q) & G_{L2}^0(q) & \dots & 0 \end{bmatrix} \begin{bmatrix} w_1(t) \\ w_2(t) \\ \vdots \\ w_L(t) \end{bmatrix} + R^0(q) \begin{bmatrix} r_1(t) \\ r_2(t) \\ \vdots \\ w_L(t) \end{bmatrix} + \begin{bmatrix} v_1(t) \\ v_2(t) \\ \vdots \\ v_L(t) \end{bmatrix}$$

$$w = G^0 w + R^0 r + v$$

$$w = G^0 w + R^0 r + H^0 e$$

- Measurements of all w(t) available
- R^0r is known
- G^0, H^0 rational transfer function matrices
- G^0 strictly proper
- H^0 monic
- Topology H^0 unknown

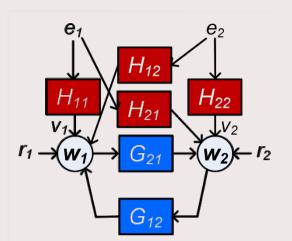
TU/e

Disturbance v(t) = He(t)

Noise can be:

- Uncorrelated
- Correlated
- Reduced rank

$$v(t) = \begin{bmatrix} H_{11} & 0\\ 0 & H_{22} \end{bmatrix} \begin{bmatrix} e_1(t)\\ e_2(t) \end{bmatrix}$$
$$v(t) = \begin{bmatrix} H_{11} & H_{12}\\ H_{21} & H_{22} \end{bmatrix} \begin{bmatrix} e_1(t)\\ e_2(t) \end{bmatrix}$$
$$v(t) = \begin{bmatrix} H_{11}\\ H_{21} \end{bmatrix} \begin{bmatrix} e_1(t) \end{bmatrix}$$



Available methods

	Variance
Indirect identification method ^[1]	Consistency
Methods that parametrize the disturbance model	Maximum Likelihood

Available methods

Method	Optimization problem	Parametrizes
Joint direct method ^[1]	Non-convex ×	General, Box Jenkins model 🗸

Available methods

Method	Optimization problem		Parametrizes	
Joint direct method ^[1]	Non-convex	×	General, Box Jenkins model	✓
Sequential Least Squares (SLS) [2]	Convex	✓	ARMAX model	×
Sequential Linear Regressions (SLR) ^[3]	Convex	~	FIR functions	×
Weighted Null Space Fitting (WNSF) ^[4,5]	Convex	~	ARMAX model, OE model	×

However, these methods require known network and disturbance topology

11 Benelux Workshop on Systems and Control, 2021, Stefanie Fonken

Problem statement

How can we effectively estimate dynamic networks with unknown disturbance topology, where the noise can be correlated and of reduced rank?

Effectiveness:

- Low computational burden Scalable to large networks
 - Convex methods
 - MIMO \rightarrow MISO
- Reduced variance
 - Parametrize disturbance model
 - Box Jenkins

Problem statement

How can we effectively estimate dynamic networks with unknown disturbance topology, where the noise can be correlated and of reduced rank?

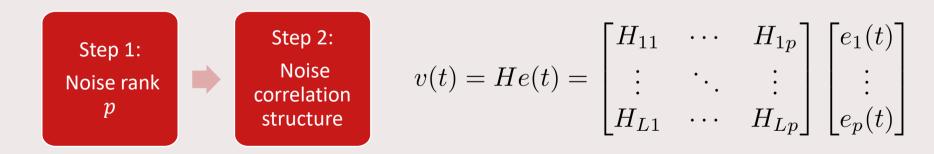
- How do we obtain disturbance topology?
- How do we implement convex parametrization of a Box Jenkins model structure?

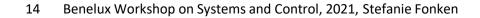
Disturbance topology detection

Why: Appropriate modeling of the disturbance

- Reduces variance
- Consistency

How: Stepwise procedure





ntroduction Problem Statement Method Results Conclusion Disturbance topology detection Step 1: Noise rank p

- Step 1 • High order ARX model $\hat{w}(t|t-1) := \overline{\mathbb{E}}\{w(t)|w^{t-1}, r^t\}$
 - Reconstruct innovation: $\hat{\varepsilon}_j = w_j \hat{w}(\hat{w}_j t(t + t))$
- $\hat{\Lambda} = \frac{1}{N} \sum_{t=1}^{N} \hat{\varepsilon} \hat{\varepsilon}^{\top}$ Singular value decomposition: $\operatorname{rank}(\hat{\Lambda}) = p$

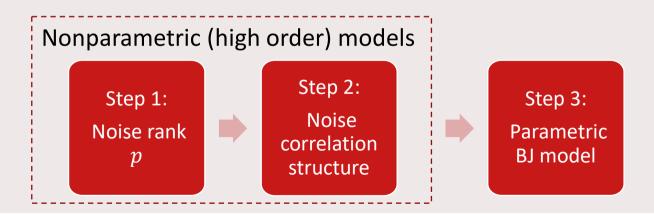
Step 2

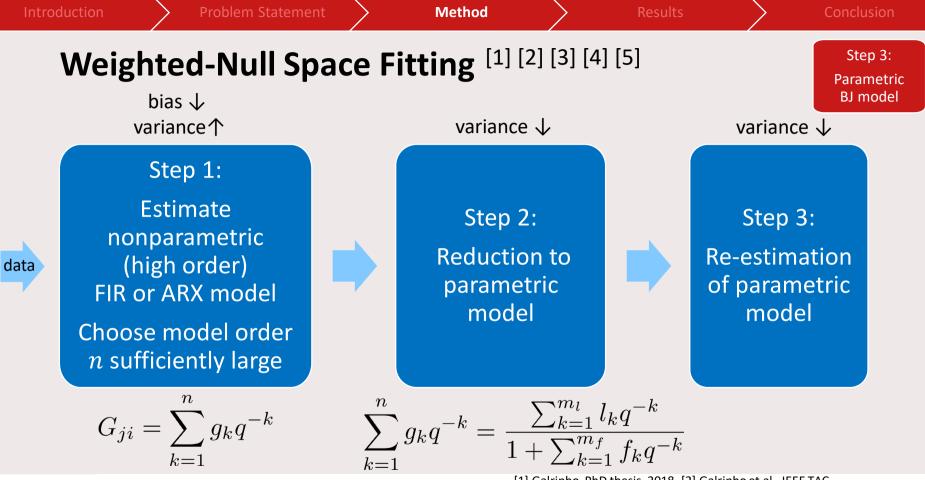
- Use $\hat{\varepsilon}_j$ as additional measured input \rightarrow Sequential Linear Regression ^[1]
- High order ARX model $\hat{w}(t|t-1) := \overline{\mathbb{E}}\{w(t)|w^{t-1}, r^t, e^{t-1}\}$
- Obtain estimates $G_{ji} = \sum_{k=1}^{n} g_k q^{-k}$ $H_{ji} = \sum_{k=1}^{n} h_k q^{-k}$
- Estimate noise correlation structure
 - Structure selection (AIC, BIC, Cross Validation)
 - Group Lasso

Full network identification

Step 3:

• From nonparametric (high order) model to parametric model \rightarrow WNSF



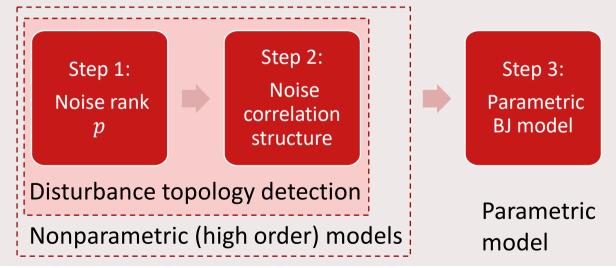


18 Benelux Workshop on Systems and Control, 2021, Stefanie Fonken

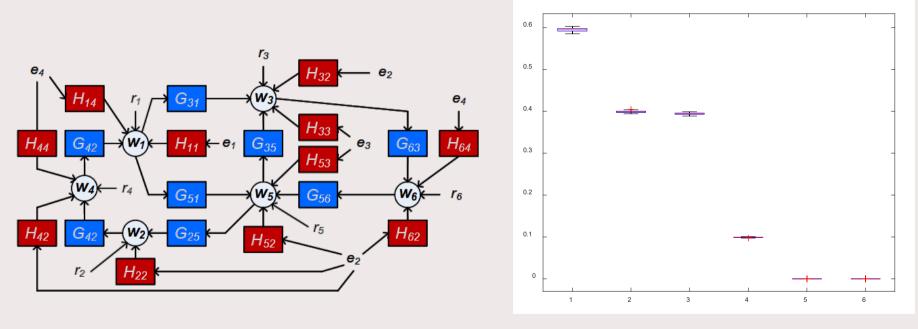
[1] Galrinho, PhD thesis, 2018. [2] Galrinho et al., IEEE TAC
2019. [3] Galrinho et al., IFAC, 2018. [4] Fonken et al., IFAC
2020. [5] Ljung and Wahlberg, Advances in Applied
Probability, 1992.

Method for full network identification ^[1]

- Convex
- MISO predictors
- Consistency path based data informativity conditions



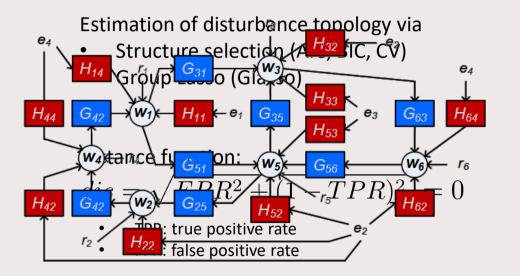
Results noise rank p estimation

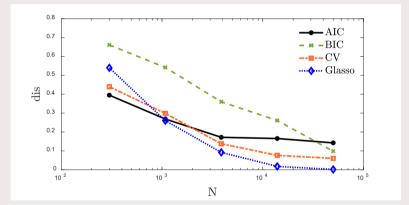


Singular value decomposition of $\hat{\Lambda}$ for N = 30000

ſU/e

Results disturbance topology detection

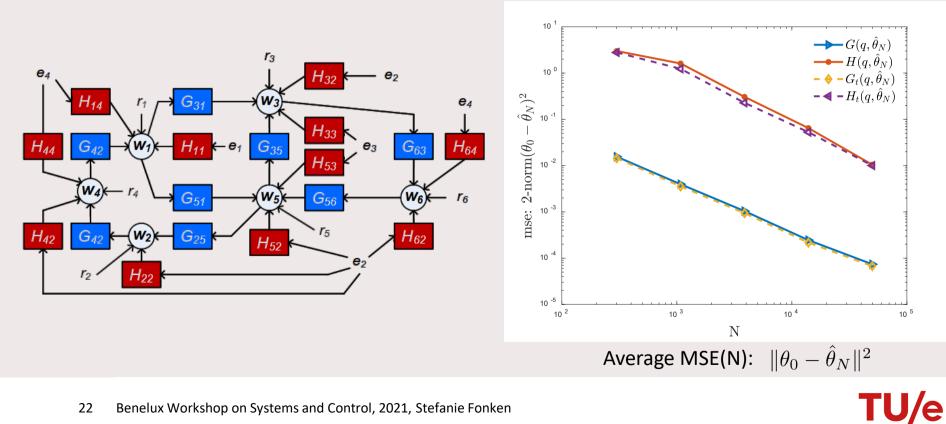


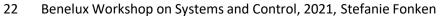


TU/e

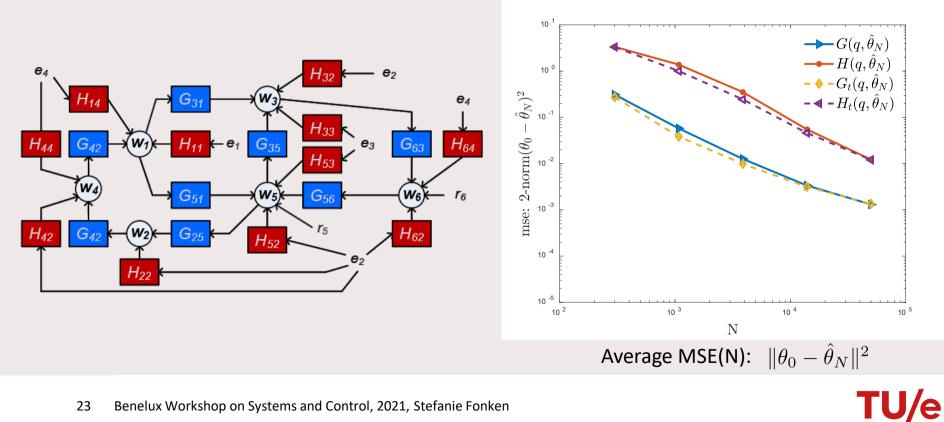
Results

Results Identification





Results Identification



Conclusion

We effectively estimate dynamic networks with unknown disturbance topology by developing a multi-step least squares method

- Scalable due to low computational burden
 - Analytical solutions (least squares)
 - MISO optimization problems parallel /sequential
- Reduced variance:
 - Estimation disturbance topology & include disturbance model in identification
 - For Box Jenkins model structures
- Consistent

Multi-step scalable least squares method for network identification with unknown disturbance topology

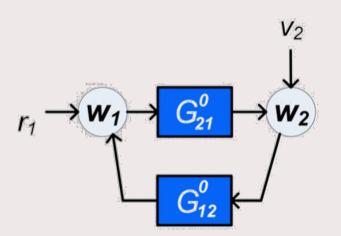
40th Benelux Meeting on Systems and Control

Rotterdam, the Netherlands, 29 June 2021

Stefanie Fonken, Karthik Ramaswamy, Paul Van den Hof

Classical identification VS Dynamic networks

Classic



Dynamic networks

