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Introduction — dynamic networks
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Network models

e scalable, describing the physics

e dynamic elements with cause-effect

* handling feedback loops (cycles)

e combining physical and cyber components
e centered around measured signals

e allow disturbances and probing signals
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Network models

o x(k+1) = Ax(k)+ Bu(k)
ay, 021 X1
xoy Gz |\ (g * States as nodes in a (directed) graph
ds2 Qs 78 g . .
2 RN ZAVEZN ‘> g * State transitions (1 step in time) reflected by a;;
X3 )~ X y7)| . .
03 N, a’ EA * Transitions are encoded in links
X0 )os; X e Ultimate break-down of system structure
G xs)y 96 * Actuation (u)and sensing (y) reflected by
bss Css separate links
& Ys

Statelanacellepresentation For data-driven modeling problems:

e Lump unmeasured states in dynamic modules
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Network models
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bss Css
us) (ys Module representation 2!

State space representation [

[1] Goncalves, Warnick, Sandberg, Yeung, Yuan, Scherpen,... TU/e
[2] VdH, Dankers, Goncalves, Warnick, Gevers, Bazanella, Hendrickx, Materassi, Weerts,...



Dynamic network models - zooming

Increasing level of
detail

Decreasing structural
information

TU/e



Dynamic network setup

Ve V7 - module

external excitation
process noise
node signal
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Dynamic network setup

Collecting all equations:

0 0
wy | _ Goq 0 G2L w2 —|—R0 T2 —I—HO €2
wry, GLl GL2 ces 0 wr, TK €p

Ny -

—

Network matrix G°(q)

w(t) = GO(Qw(t) + RO (q)r(t) +v(t);  v(t) = H(q)e(t); cov(e) = A
u(t)

e Typically RV is just a (static) selection matrix, indicating which nodes have an excitation signal.

e The topology of the network is encoded in the structure (non-zero entries) of G°.

e 7 and e are called external signals.

J. Gongalves and S. Warnick, IEEE TAC, 2008. TU
PVdH et al., Automatica, 2013. e



Dynamic network setup

Many challenging data-driven modeling
and diagnostics challenges appear

* I|dentification of a local module
(known topology)
* Identification of the full network
* Topology estimation
* Identifiability
e Sensor and excitation allocation
Measured time series: e Diagnostics and fault detection
. . . . _ e User prior knowledge of modules
twit)iz,.L5 A7) }j=1, K * Distributed identification
* Scalable algorithms

TU/e
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Application: Printed Circuit Board (PCB) Testing

Detection of

* component failures

* parasitic effects

12
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Single module identification

For a network with
known topology:

* |dentify G9, on the basis of
measured signals

* Which signals to measure?
Preference for local
measurements

* When is there enough
excitation / data informativity?

TU/e
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Single module identification

Different types of methods:

Indirect methods:

* Rely on mappings r — w
and on sufficient excitation
signals r

Direct methods:

* Rely on mappings w — w
and use excitation from both
r and v signals

TU/e



Single module identification — local direct method

Select a subnetwork:

* Predicted outputs: w,,

* Predictorinputs:  wp

such that prediction error minimization leads to
an accurate estimate of g9,

Wy —b > W

w, {% ] G - > wo} w, {E}:-j:}%

Note: same node signals can appear in input and output

16
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Single module identification

wD{%-. C_}-

Wy —>

Conditions for arriving at a consistent model estimate:

1
2.
3
4

. : e .
Module invariance: G;; = G3;
Handling of confounding variables

Data-informativity

Technical conditions on presence of delays

\

>

Path-based conditions on the

selected signals and the
network graph

TU/e
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Wy — —»wQ

Single module identification . [%—»ﬁ—»wo

Conditions for arriving at a consistent model estimate:

1. Module invariance: Gj; = GY

.

PPL condition: all parallel paths and loops
around the output should be blocked by a
@ measured node that is present in wp

o Il-e¢

2. Handling of confounding variables

@g No correlated disturbances between w,
O and signals in wy, that are in-neighbors of w,,

TU/e



Wy — —»wQ

Single module identification . [%—»ﬁ—»] N

Conditions for arriving at a consistent model estimate:

3. Data informativity:
wy (t) = G(g, 0)wo(t) + H(g,0)&(t) + J (g, 0)uc(t) + Sup(t)

The inputs of the predictor model should receive enough

excitation from external signals (e- and u-signals)
wp (t)
Sufficient condition: [@H(w) > 0 for almost all w ] for k(t) := {@(t)]
e ()
K persistently exciting holds generically if there are
dim(k) vertex disjoint paths between external signals {u, e} and

TU/e
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Data informativity (classical definition)

Predictor model: wy(t,0) = W(q, 0)=z(t)

for a model set M parametrized by 8 € ©

Then a data sequence {z(t) }+=o,... is informative with respect to M
if for any two models in M :

[E[<W1(q>—wz(q>>z(t)]2=o — Wi(e') EWz(ei“’)]

A sufficient condition for this is that z is persistently exciting:

{@z(w) > 0 for almost all w ]

[1] L. Ljung, Englewood Cliffs, NJ: Prentice-Hall, 1999

TU/e
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Single module identification

Different synthesis algorithms can provide predictor models that satisfy the conditions

Multiple solutions

for either full/partial
measurement

Typical result:

# required excitation signals

increases with
increasing # outputs

[1] K.R. Ramaswamy et al., IEEE-TAC, 2021.
[2] S.J.M. Fonken et al., CDC, 2023.

4 TU/e Dynamic Network App
File Seftings Actions View Highiight Edit Operations Identifianilty Predictor Model Help
2 °@men

Dynamic Network: Predictor model

TU/

Target Module Predictor Models Analysis
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[3] Control Systems Group TU/e, SYSDYNET Toolbox for MATLAB, 2023, www.sysynet.net.
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Summary single module identification

Path-based conditions that the predictor model should satisfy

Different algorithms for synthesizing predictor model

Degrees of freedom in sensor / actuator placement

Onec a predictor model is constructed, estimation comes down to a
“classical” MISO/MIMO estimation problem

TU/e



EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Generic network identifiability



24

Full network identification

Under which conditions can we estimate the topology and/or
dynamics of the full network?

TU/e
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Network identifiability

blue = unknown
red =known

Question: Can different dynamic networks be distinguished from each other from
measured signals w, r?

TU/e
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Network identifiability

The identifiability problem:

The network model:

w(t) = G(q)w(t) + R(q)r(t) + H(q)e(t)
v(t)

can be transformed with any rational P(q) :

P(q)w(t) = P(q){G(q)w(t)+R(q)r(t)+H(q)e(t)}
to an equivalent model:

w(t) = G(q)w(t) + R(q)r(t) + H(q)e(t)

=) NONuNiqueness, unless there are structural constraints on G, R, H.

[1] Weerts, Linder et al., Automatica, 2019.
[2] Bottegal et al., SYSID 2017

TU/e
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Network identifiability

Consider a network model set:
M = {(G(0), R(0), H(0))}eco

representing structural constraints on the considered models:

* modules that are fixed and/or zero (topology)
* locations of excitation signals
e disturbance correlation

Generic identifiability of M :

- There do not exist distinct equivalent models (generating the same data)
- for almost all models in the set.

[1] Weerts et al., SYSID2015; Weerts et al., Automatica, March 2018;
[2] Bazanella, CDC2017; Hendrickx et al., IEEE-TAC, 2019.

TU/e
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Example 5-node network

Conditions for identifiability s===) rank conditions on transfer function

Full row rank of mapping

rs V1

External signals Node signals that
that do not enter enter w; through
w; through a == 3 parametrized
parametrized module

module

-

For the generic case, the rank can be calculated by a graph-based condition*}[2];

Generic rank = number of vertex-disjoint paths

2 vertex-disjoint paths - full row rank 2 @

The rank condition has to be checked for all nodes.

[1] Van der Woude, 1991.
[2] Hendrickx, Gevers & Bazanella, CDC 2017, TAC 2019.
[3] H. van Waarde et al., TAC, 2019.

TU/e
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Synthesis solution for network identifiability

Allocating external signals for generic identifiability:

1. Cover the graph of the network model set by a set of disjoint pseudo-trees
Pseudo-trees:

Cycle with outgoing trees;

Tree with root in green _ _
Any node in cycle is root

Indegree of all nodes < 1

Edges are disjoint and all out-neighbours of a node are in the same pseudo-tree

2. Assign an independent external signal (7 or e) at a root of each pseudo-tree.
This guarantees generic identifiability of the model set.

[1] X. Cheng, S. Shi and PVdH, TAC, February 2022. TU/e



Where to allocate external excitations for network identifiability?

All indicated modules are parametrized

Two disjoint pseudo-trees

30
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Where to allocate external excitations for network identifiability?

Two independent excitations
guarantee
generic network identifiability

[1] X. Cheng, S. Shi and PVdH, CDC 2019.
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Where to allocate external excitations for network identifiability?

Vi 7"2;

——

Pseudo-tree
merging
algorithm [

* Nodes are signals w and external signals (7, €) that are input to a parametrized link

* Known (nonparametrized) links do not need to be covered

[1] X. Cheng, S. Shi and PVdH, TAC, February 2022. TU/e
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Merging algorithm
Consider the disjoint pseudotree covering: {71, Tn}

Construct the mergability matrix 2t with

1 if T; is mergeable to T;
M;; = G if there are no common vertices in T; and T,

0 otherwise

Merging is represented by an algebraic row- and column operation on 9t

Final reduction step

After allocation, evaluate (path-based test) whether any of the excitation
signals is superfluous

TU/e
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8-node example

6 7 8

Network graph covered by 4 edge-disjoint
pseudo-trees

Four external signals added for
identifiability: (1 or 6), (7 or 8), 2 and 5

When 4 (dashed) edges are known

Network graph covered by 3 edge-disjoint
pseudo-trees

Three external signals added for
identifiability: (1 or 6), (7 or 8), and 2

TU/e
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Conservatism of current solution

™

i 2
3
4 5!
T2
2 pseudo-trees for all edges Dashed edges are fixed.
parametrized Parametrized edges covered

by 2 pseudo-trees (4-2-3, 5-1)

TU/e
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Conservatism of current solution

™

1 2

4 5

)

2 pseudo-trees for all edges
parametrized

Dashed edges are fixed.
Parametrized edges covered
by 2 pseudo-trees (4-2-3, 5-1)

But: all parametrized edges
can be covered by 1 pseudo-
tree: (5-1-4-2-3)

TU/e
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New approach: explicit incorporation of fixed edges

Define multi-rooted graph: directed graph for which there is a nonempty set
of roots from all of which there exist paths to every vertex in the graph.

Define single source identifiable multi-rooted graph (SIMUG):
multi-rooted graph where each vertex has an indegree of parametrized edges < 1.

Define edge-disjoint SIMUGs:
no common edges and for each vertex all outgoing edges are in the same SIMUG.

Result:
Generic network identifiability holds if:
* All parametrized edges in the network graph are covered by edge-disjoint

SIMUGs, and
* An external signal (ror e) is applied to one vertex in the root set of every SIMUG.

[1] M. Dreef et al, CDC 2022. TU/e
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Examples of SIMUGs

One SIMUG

O

O

Two edge-disjoint SIMUGSs

O

/

Two SIMUGs,

but not edge-disjoint

TU/e
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Applied to 8-node example with fixed links:

Dashed links are fixed (known modules)

Network graph covered by 3 edge-disjoint
pseudo-trees

Three external signals added for
identifiability: (1 or 6), (7 or 8), and 2

Network graph covered by 2 edge-disjoint
SIMUGs

Two external signals required for
identifiability: (1 or 6) and (7 or 8)

TU/e



Synthesis algorithm available in the SYSDYNET toolbox:

4 TU/e Dynamic Metwork App

W

Dynamic Network: Identifiability

Node ()

Excilation signal (u)

Disturbance signal (v)

®  Module (G)

®  Known modules
Pseudotree roots

W Selecied pseudotres roots

40

O3 — We43—— @4

Select one excitation node for each pseudotree (#)

Pseudotree # Excited nodes selection

_ Double-click to select
[

u
es have received an exctation signal

ul
552022_ExamFig3.mat was loaded su¢
] Automatic selection Cancal | Accept

[1] Control Systems Group TU/e, SYSDYNET Toolbox for MATLAB, 2023, www.sysynet.net.
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Merging algorithm - slight adaptation

Consider the disjoint SIMUG covering: {71, Tn}

Construct the mergability matrix 29T with

1 if T; is mergeable to T;
M;; = ¢ @ if there are no vertices in T; U T; with multiple parametrized incoming links,

0 otherwise

Merging is represented by an algebraic row- and column operation on 9t

TU/e
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Summary

Identifiability of network model sets is determined by

* Presence and location of external signals,
e Correlation of disturbances
* Topology of network: parametrized/fixed modules

* Graph-based method for synthesizing allocation of external signals
* that effectively exploits the presence of fixed (known) modules

e and can be executed through algebraic operations

e But reaching the minimum number of excitations is not guaranteed

Extensions:
 Situations where not all node signals are measured [1.2]

[1] A. Bazanella, CDC 2019.
[2] X. Cheng et al., TAC-TN, 2023.

TU/e
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Back to the basics of physical interconnections

In connecting physical systems, there is often no predetermined

direction of information [

=

wi— eI —w, N st

IRy &n

w2 w3
Uz us
mo VYWV ms
==

Example: resistor / spring connection in electrical / mechanical system:

*\\\®

Resistor Spring
F = K(x; — x3)

1
I == -V
= (V=)

Difference of node signals drives the interaction: diffusive coupling

[1]J.C. Willems (1997,2010)

TU/e
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Diffusively coupled physical network

Equation for node j:

M;;;(£)+Djotb; (£)+ ) | Djs(ti; (t) — n(t))+Kjow; () + Y Kjk(w;(t) — wi(t)) = uji(t),
k#j k#j

TU/e
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Mass-spring-damper system

* Masses M;
* Springs Ky

* Dampers Dj

* Inputy;
M, Wy 2} Kio 61
M3 W3 Wg 0 W3__
Wy Ki» + K13 —Kpp _K13
+ Wa [+ —Kiz K12 W2 = u2
1 [W3 —Kis3
[ X(p) + Y(p) ]w(t)=u(?) X (p), Y (p) polynomial p=—

diagonal Laplacian

TU/e
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Mass-spring-damper system

[ X(p) + Y(p) |w()=u(t) X(p),Y(p)polynomial
—— ——

diagonal Laplacian

[ Q(p) — P(p) J w(t) = u(t)
—— ~——
diagonal hollow&symmetric
This fully fits in the earlier module representation:
w(t) = Gw(t) + Rr(t) + He(t)
Q-1 (p)u(t)

with the additional condition that:

G(p) =Q(p)'P(p)  Q(p),P(p) polynomial
P(p) symmetric, Q(p) diagonal

TU/e
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Module representation

Consequences for node interactions:

P12

@Q_zz

* Node interactions come in pairs of modules
* Where numerators are the same

Framework for network identification remains the same

* Symmetry can be incorporated in identifiability/identification

[1] E.M.M. Kivits et al., CDC 2019. TU/e



49

Polynomial representation

More attractive: stay within the polynomial domain (discrete-time now)

Q@) —  Plgh)  Jw(t)=u()
N—— ——

diagonal hollow&symmetric

A(g™Yyw(t) = Blg™)r(t) + v(t)

u(t)

with A(g™') symmetric and nonmonic

ie. A(gY)=A0+A g+ A"

TU/e
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Network identifiability!!]

New analysis, based on T’ (q) only (noise discarded because of algebraic loops):

A(g Hw(t) = B(g )r(t)
I(g~") [A(g " )w(t) = B(g~")r(t)]

Identifiability conditions:

* Atleast 1 excitation signal r(t) present B(q™ ') present

« A(qg™') and B(q~1) left coprime

II(g~") unimodular

« diagonality constrainton[Ag--- A, Bo---B,| ¢ IIdiagonal
e A(qg™') symmetric e II=al
* 1 parametric constraintin A(q~') or B(q™ ') e =1

[1] E.M.M. Kivits and PVdH, TAC 2023. TU/e
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Polynomial representation - identifiability

Identifiability conditions are strongly relaxed (compared to module framework)
in terms of number of excitation signals required.

Diffusive couplings strongly limit the degrees of freedom in the network model

Identification algorithms are available for both full network!!! and local
identification(?l.

[1] E.M.M. Kivits and PVdH, TAC 2023.
[2] E.M.M. Kivits and PVdH, CDC 2022.

TU/e
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Summary diffusively coupled networks

* Interesting class of models, not extensively studied in identification
* Non-directed graphs
* Adhering to physical interconnections

* Framework is fit for representing combined networks
(combining physical bi-directional links, and cyber uni-directional links)!

[1] E.M.M. Kivits, PhD-Thesis 2024 (to appear). TU/e



53

Algorithms implemented in SYSDYNET Toolbox

4. TUfe Dynamic Network App

File Actions View Highlight Edit Operations Identifiability Predictor Modsl Help

- Jb- S ol ¥

Dynamic Network: Editor

TU/e Sie

Structural analysis and operations
on dynamic module networks

Edit
Nodes

Action: (@) add () Delete
Type: |Externalexcit. v
From
To: Select v
Add
Links
Action: (@) Add () Delete
From Select v
i Select
Connect | Clear

Properties

[ :

®e7
r'
w7
A \\
_HG8 7 X,
ad WGT.6
.
Mt Y
Y p 8
G2
# ——mGZ1
]é1 591
j {E W
A \
m|e3s Y
L E]
y
®e3

""';‘: e2
_r'
(w2
,
LN
WG2 4
»
O _wﬁ."
_WGA3 AN
o2

—@ed

=—e—3 Network
Node (w)
@  External excitation (r)
®  While noise (e)
m  Module (G)

node |measured Modules
w1 gl #) Single Module
w2 ] All Modules
w3
= Select v
wd v S5
w5 V]
Known

w6 v
w7 = - [] Switching

2 [ Strictly Proper

Edit and manipulate

Assign properties to nodes
and modules

Immersion of nodes, PPL test
Generic identifiability analysis
and synthesis

Predictor model selection for
single module ID

Beta-version 0.2.0, September 2023, to be downloaded from www.sysdynet.net

to be complemented with

estimation algorithms for
single module and

full network ID;

topology estimation

TU/e



http://www.sysdynet.net/

ERC SYSDYNET Team: data-driven modeling in dynamic networks

Research team:

SYSTEM ID _— g
ENTIFICATI i
ONINDYNA -

MiC NETW

ORKS st |

Arne Dankers Harm Weerts Shengling Shi Tom Steentjes Lizan Kivits

Tl
llja v. Oort Mannes Dreef

+ MSc students

Stefanie Fonken Xiaodong Cheng Giulio Bottegal Mircea Lazar  Tijs Donkers Wim Liebregts

Ludlage

Co-authors, contributors and discussion partners:
Donatello Materassi, Manfred Deistler, Michel Gevers, Jonas Linder, Sean Warnick, Alessandro Chiuso, Hakan

Hjalmarsson, Miguel Galrinho, Martin Enqvist, Johan Schoukens, Xavier Bombois, Peter Heuberger, Péter Csurcsia
Minneapolis, Vienna, Louvain-la-Neuve, Linkdping, KTH Stockholm, Padova, Brussels, Salt Lake City, Lyon.

TU/e

54

European Research Council



Further reading

* P.M.J. Van den Hof, A. Dankers, P. Heuberger and X. Bombois (2013).
Identification of dynamic models in complex networks with prediction error
methods - basic methods for consistent module estimates. Automatica, Vol.
49, no. 10, pp. 2994-3006.

* A.Dankers, P.M.J. Van den Hof, X. Bombois and P.S.C. Heuberger (2015).
Errors-in-variables identification in dynamic networks - consistency results for
an instrumental variable approach. Automatica, Vol. 62, pp. 39-50, 2015.

* A.Dankers, P.M.J. Van den Hof, P.S.C. Heuberger and X. Bombois (2016).
Identification of dynamic models in complex networks with predictior error
methods - predictor input selection. IEEE Trans. Autom. Contr., 61 (4), pp.
937-952, 2016.

*  H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2018). Identifiability of
linear dynamic networks. Automatica, 89, pp. 247-258, March 2018.

*  H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2018). Prediction error
identification of linear dynamic networks with rank-reduced noise. Automatica,
98, pp. 256-268, December 2018.

* H.H.M. Weerts, J. Linder, M. Enqvist and P.M.J. Van den Hof (2019).
Abstractions of linear dynamic networks for input selection in local module
identification. Automatica, Vol. 117, July 2020.

» R.J.C.van Esch, S. Shi, A. Bernas, S. Zinger, A.P. Aldenkamp and P.M.J.
Van den Hof (2020). A Bayesian method for inference of effective connectivity
in brain networks for detecting the Mozart effect. Computers in Biology and
Medicine, Vol. 127, paper 104055, December 2020.

* K.R. Ramaswamy, G. Bottegal and P.M.J. Van den Hof (2020). Learning
linear models in a dynamic network using regularized kernel-based
methods. Automatica, Vol. 129, Article 109591, July 2021.

* P.M.J. Van den Hof and K.R. Ramasmwamy (2021). Learning local modules
in dynamic networks. Proc. of Machine Learning Res., Vol. 144, pp. 176-188.

Papers available at www.sysdynet.eu

K.R. Ramaswamy and P.M.J. Van den Hof (2021). A local direct method for
module identification in dynamic networks with correlated noise. IEEE Trans.
Automatic Control, Vol. 66, no. 11, pp. 3237-3252, November 2021.

X. Cheng, S. Shi and P.M.J. Van den Hof (2022). Allocation of excitation signals
for generic identifiability of linear dynamic networks. IEEE Trans. Automatic
Control, Vol. 67, no. 2, pp. 692-705, February 2022.

S. Shi, X. Cheng and P.M.J. Van den Hof (2022). Generic identifiability of
subnetworks in a linear dynamic network: the full measurement
case. Automatica, Vol. 117 (110093), March 2022.

S.J.M. Fonken, K.R. Ramaswamy and P.M.J. Van den Hof (2022). A scalable
multi-step least squares method for network identification with unknown
disturbance topology. Automatica, Vol. 141 (110295), July 2022.

K.R. Ramaswamy, P.Z. Csurcsia, J. Schoukens and P.M.J. Van den Hof (2022).
A frequency domain approach for local module identification in dynamic
networks. Automatica, Vol. 142 (110370), August 2022.

S. Shi, X. Cheng and P.M.J. Van den Hof (2023). Single module identifiability in
linear dynamic networks with partial excitation and measurement. /[EEE Trans.
Automatic Control, Vol. 68(1), pp. 285-300, January 2023.

X.Bombais, K. Colin, P.M.J. Van den Hof and H. Hjalmarsson (2023). On the
informativity of direct identification experiments in dynamical networks.
Automatica, Vol. 148 (110742), February 2023.

E.M.M. Kivits and P.M.J. Van den Hof (2023). Identification of diffusively coupled
linear networks through structured polynomial models. /EEE Trans. Automatic
Control, Vol. 68(6), pp. 3513-3528, June 2023.

X. Cheng, S. Shi, I. Lestas and P.M.J. Van den Hof. A necessary condition for
network identifiability with partial excitation and measurement. To appear as
Technical Note in IEEE Trans. Automatic Control, Vol. 68 (11), November 2023.

T.R.V. Steentjes, M. Lazar and P.M.J. Van den Hof. On a canonical distributed
controller in the behavioral framework. Syst.&Control Lett., Vol. 179 (105581),

September 2023.



EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

The end



	                 
	Introduction – dynamic networks 
	Network models
	Network models 
	Network models 
	Dynamic network models - zooming
	Dynamic network setup 
	Dynamic network setup 
	Dynamic network setup 
	Application: Printed Circuit Board (PCB) Testing
	Single module identification��
	Single module identification
	Single module identification
	Single module identification – local direct method
	Single module identification
	Single module identification
	Single module identification
	Data informativity (classical definition)
	Single module identification
	Summary single module identification
	Generic network identifiability
	Full network identification
	Network identifiability 
	Network identifiability 
	Network identifiability 
	Example 5-node network 
	Synthesis solution for network identifiability 
	Where to allocate external excitations for network identifiability?�
	Where to allocate external excitations for network identifiability?�
	Where to allocate external excitations for network identifiability?�
	Merging algorithm 
	8-node example
	Conservatism of current solution
	Conservatism of current solution
	New approach: explicit incorporation of fixed edges
	Examples of SIMUGs
	Applied to 8-node example with fixed links:
	Slide Number 40
	Merging algorithm – slight adaptation 
	Summary
	Diffusively coupled networks
	Back to the basics of physical interconnections
	Diffusively coupled physical network
	Mass-spring-damper system
	Mass-spring-damper system
	Module representation
	Polynomial representation
	Network identifiability[1] 
	Polynomial representation - identifiability
	Summary diffusively coupled networks
	Algorithms implemented in SYSDYNET Toolbox
	ERC SYSDYNET Team: data-driven modeling in dynamic networks
	Further reading 
	The end��

