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Introduction – dynamic networks 

Decentralized process control

2

Complex machines

Smart power grid

Hydrocarbon reservoirs

Pierre et al.  (2012)

Mansoori (2014)

Brain network

P. Hagmann et al. (2008)
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Network models

D. Materassi and M.V. Salapaka (2012)                      www.momo.cs.okayama-u.ac.jp                       E.A. Carara and F.G. Moraes (2008)                                       P.M.J. Van den Hof et al (2013)
J.C. Willems (2007) X.Cheng (2019)

R.N. Mantegna (1999)                                                     D. Koller and N. Friedman (2009)                             P.E. Paré et al (2013)                                                                           E. Yeung et al (2010)

• scalable, describing the physics
• dynamic elements with cause-effect
• handling feedback loops (cycles)
• combining physical and cyber components
• centered around measured signals
• allow disturbances and probing signals
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Network models
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State space representation

• States as nodes in a (directed) graph
• State transitions (1 step in time) reflected by 
• Transitions are encoded in links
• Ultimate break-down of system structure
• Actuation       and sensing       reflected by 

separate links

For data-driven modeling problems:
• Lump unmeasured states in dynamic modules
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Network models

6

State space representation [1]

Module representation [2]

[1] Goncalves, Warnick, Sandberg, Yeung, Yuan, Scherpen,…

[2] VdH, Dankers, Goncalves, Warnick, Gevers, Bazanella, Hendrickx, Materassi, Weerts,… 



Dynamic network models - zooming
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Decreasing structural
information

Increasing level of 
detail



Dynamic network setup 
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module
ri external excitation
vi process noise
wi node signal

G76



Dynamic network setup 
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Collecting all equations:

J. Gonçalves and S. Warnick, IEEE TAC, 2008.
PVdH et al., Automatica, 2013.



Dynamic network setup 
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• Identification of a local module 
(known topology)

• Identification of the full network
• Topology estimation
• Identifiability
• Sensor and excitation allocation
• Diagnostics and fault detection 
• User prior knowledge of modules
• Distributed identification
• Scalable algorithms

Measured time series:

Many challenging data-driven modeling  
and diagnostics challenges appear



Application: Printed Circuit Board (PCB) Testing
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Source: Altium

Detection of
• component failures
• parasitic effects



Data-driven modeling in linear dynamic networks13

.

Single module identification



Single module identification

14

For a network with 
known topology:

• Identify        on the basis of 
measured signals

• Which signals to measure? 
Preference for local 
measurements

• When is there enough 
excitation / data informativity?



Indirect  methods:
• Rely on mappings      

and on sufficient excitation
signals  

Single module identification

15

Different types of methods:

Direct methods:
• Rely on mappings      

and use excitation from both
and     signals  



Single module identification – local direct method
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Select a subnetwork: 
• Predicted outputs: 
• Predictor inputs:
such that prediction error minimization leads to
an accurate estimate of 

Note: same node signals can appear in input and output



Single module identification
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Conditions for arriving at a consistent model estimate:

1. Module invariance: 

2. Handling of confounding variables 

3. Data-informativity
4. Technical conditions on presence of delays

Path-based conditions on the 
selected signals and the 
network graph



Single module identification

18

Conditions for arriving at a consistent model estimate:

1. Module invariance: 

2. Handling of confounding variables 

w1 w2

wp

G21
0

0

wl

PPL condition: all parallel paths and loops 
around the output should be blocked by a 
measured node that is present in 

No correlated disturbances between
and signals in       that are in-neighbors of

w1 w2

wc

G21

vc

0

0



Single module identification
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Conditions for arriving at a consistent model estimate:

3. Data informativity: 

The inputs of the predictor model should receive enough 
excitation from external signals (e- and u-signals)

Sufficient condition: for almost all for

persistently exciting holds generically if there are 
vertex disjoint paths between external signals            and                                     



Then a data sequence                          is informative with respect to 

Predictor model:                                               

Data informativity (classical definition)

for almost all 

20

[1] L. Ljung, Englewood Cliffs, NJ: Prentice-Hall, 1999

if for any two models in       :  

A sufficient condition for this is that      is persistently exciting:  

for a model set        parametrized by 



Single module identification
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Different synthesis algorithms can provide predictor models that satisfy the conditions

Typical result:

Multiple solutions

# required excitation signals 
increases with 
increasing # outputs

for either full/partial 
measurement

[1] K.R. Ramaswamy et al., IEEE-TAC, 2021.
[2] S.J.M. Fonken et al., CDC, 2023.

[3] Control Systems Group TU/e, SYSDYNET Toolbox for MATLAB, 2023, www.sysynet.net.



Summary single module identification

• Path-based conditions that the predictor model should satisfy

• Different algorithms for synthesizing predictor model

• Degrees of freedom in sensor / actuator placement

• Onec a predictor model is constructed, estimation comes down to a 
“classical’’ MISO/MIMO estimation problem

22



Data-driven modeling in linear dynamic networks23
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Generic network identifiability



Full network identification

24

Under which conditions can we estimate the topology and/or 
dynamics of the full network?



Network identifiability

blue = unknown
red   = known

Question:   Can different dynamic networks be distinguished from each other from
measured signals w , r ?

25



Network identifiability

The identifiability problem: 

26

The network model:

can be transformed with any rational : 

to an equivalent model: 

Nonuniqueness,  unless there are structural constraints on  

[1] Weerts, Linder et al., Automatica, 2019.
[2] Bottegal et al., SYSID 2017



Network identifiability
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Consider a network model set:

representing structural constraints on the considered models: 
• modules that are fixed and/or zero (topology)
• locations of excitation signals
• disturbance correlation

Generic identifiability of       :
- There do not exist distinct equivalent models (generating the same data)
- for almost all models in the set. 

[1] Weerts et al., SYSID2015; Weerts et al., Automatica, March 2018; 
[2] Bazanella, CDC2017; Hendrickx et al., IEEE-TAC, 2019. 



Conditions for identifiability              rank conditions on transfer function  

Example 5-node network

28

w5 w1G15 w4G21 w3G34

G12 G23

G53

v1 v2 v3r4

w2

r5

2 vertex-disjoint paths → full row rank 2

For the generic case, the rank can be calculated by a graph-based condition[1],[2] :

Generic rank = number of vertex-disjoint paths

[1] Van der Woude, 1991.
[2] Hendrickx, Gevers & Bazanella, CDC 2017, TAC 2019.
[3] H. van Waarde et al., TAC, 2019.

The rank condition has to be checked for all nodes.

Full row rank of mapping
External signals 
that do not enter

through a 
parametrized 
module

Node signals that 
enter       through 
a parametrized 
module



Synthesis solution for network identifiability
Allocating external signals for generic identifiability:  

29

Tree with root in green Cycle with outgoing trees;
Any node in cycle is root

Pseudo-trees:

[1] X. Cheng, S. Shi and PVdH, TAC, February 2022. 

1. Cover the graph of the network model set by a set of disjoint pseudo-trees

Edges are disjoint and all out-neighbours of a node are in the same pseudo-tree 

2. Assign an independent external signal (    or    ) at a root of each pseudo-tree. 
This guarantees generic identifiability of the model set.  

Indegree of all nodes 
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5 1 2 4 3

5 1 2 4 3Two disjoint pseudo-trees

Where to allocate external excitations for network identifiability?

w5 w1G15 w4G21 w3G34

G12 G23

G53

w2

All indicated modules are parametrized
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5 1 2 4 3

5 1 2 4 3
Two independent excitations 
guarantee 
generic network identifiability

Where to allocate external excitations for network identifiability?

[1] X. Cheng, S. Shi and PVdH, CDC 2019. 

w5 w1G15 w4G21 w3G34

G12 G23

G53

w2
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Where to allocate external excitations for network identifiability?

21

97 8

3

65

4
r1 r2

r3 r4

• Nodes are signals      and external signals           that are input to a parametrized link

[1] X. Cheng, S. Shi and PVdH, TAC, February 2022. 

Pseudo-tree
merging

algorithm [1]

• Known (nonparametrized) links do not need to be covered
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Merging algorithm 

Consider the disjoint pseudotree covering: 

Construct the mergability matrix        with   

Merging is represented by an algebraic row- and column operation on   

Final reduction step
After allocation, evaluate (path-based test) whether any of the excitation 
signals is superfluous
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8-node example

Network graph covered by 4 edge-disjoint 
pseudo-trees
Four external signals added for 
identifiability: (1 or 6), (7 or 8), 2 and 5

When 4 (dashed) edges are known

Network graph covered by 3 edge-disjoint 
pseudo-trees
Three external signals added for 
identifiability: (1 or 6), (7 or 8), and 2
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Conservatism of current solution

2 pseudo-trees for all edges 
parametrized

Dashed edges are fixed.
Parametrized edges covered 
by 2 pseudo-trees (4-2-3, 5-1)
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Conservatism of current solution

2 pseudo-trees for all edges 
parametrized

Dashed edges are fixed.
Parametrized edges covered 
by 2 pseudo-trees (4-2-3, 5-1)

But: all parametrized edges 
can be covered by 1 pseudo-
tree: (5-1-4-2-3)
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New approach: explicit incorporation of fixed edges

Define multi-rooted graph: directed graph for which there is a nonempty set 
of roots from all of which there exist paths to every vertex in the graph.

Define single source identifiable multi-rooted graph (SIMUG): 
multi-rooted graph where each vertex has an indegree of parametrized edges ≤ 1.

Define edge-disjoint SIMUGs:  
no common edges and for each vertex all outgoing edges are in the same SIMUG.

Result:
Generic network identifiability holds if:
• All parametrized edges in the network graph are covered by edge-disjoint 

SIMUGs, and
• An external signal (   or   ) is applied to one vertex in the root set of every SIMUG.

[1] M. Dreef et al, CDC 2022.
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One SIMUG Two edge-disjoint SIMUGs Two SIMUGs, 
but not edge-disjoint

Examples of SIMUGs
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Applied to 8-node example with fixed links:

Dashed links are fixed (known modules)

Network graph covered by 2 edge-disjoint 
SIMUGs 
Two external signals required for 
identifiability: (1 or 6) and (7 or 8)

Network graph covered by 3 edge-disjoint 
pseudo-trees
Three external signals added for 
identifiability: (1 or 6), (7 or 8), and 2
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Synthesis algorithm available in the SYSDYNET toolbox:

[1] Control Systems Group TU/e, SYSDYNET Toolbox for MATLAB, 2023, www.sysynet.net.
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Merging algorithm – slight adaptation 

Merging is represented by an algebraic row- and column operation on   

Consider the disjoint SIMUG covering: 

Construct the mergability matrix        with   



Summary
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Identifiability of network model sets is determined by

• Presence and location of external signals, 
• Correlation of disturbances
• Topology of network: parametrized/fixed modules

• Graph-based method for synthesizing allocation of external signals
• that effectively exploits the presence of fixed (known) modules 
• and can be executed through algebraic operations
• But reaching the minimum number of excitations is not guaranteed 

Extensions:
• Situations where not all node signals are measured [1,2]

[1] A. Bazanella, CDC 2019. 
[2] X. Cheng et al., TAC-TN, 2023.
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Diffusively coupled networks



Back to the basics of physical interconnections

44

Resistor

𝐼𝐼 =
1
𝑅𝑅 𝑉𝑉1 − 𝑉𝑉2

Spring
1
𝑅𝑅 𝐹𝐹 = 𝐾𝐾 𝑥𝑥1 − 𝑥𝑥2

1
𝑅𝑅

In connecting physical systems, there is often no predetermined 
direction of information [1]

w1 w2G21

Example: resistor / spring connection in electrical / mechanical system:

Difference of node signals drives the interaction:   diffusive coupling

[1] J.C. Willems (1997,2010)



Diffusively coupled physical network

45

Equation for node j:   



Mass-spring-damper system
• Masses 𝑀𝑀𝑗𝑗
• Springs 𝐾𝐾𝑗𝑗𝑗𝑗
• Dampers 𝐷𝐷𝑗𝑗𝑗𝑗
• Input 𝑢𝑢𝑗𝑗

𝑀𝑀1
𝑀𝑀2

𝑀𝑀3

�̈�𝑤1
�̈�𝑤2
�̈�𝑤3

+
0

𝐷𝐷20
0

�̇�𝑤1
�̇�𝑤2
�̇�𝑤3

+
𝐾𝐾10

0
0

𝑤𝑤1
𝑤𝑤2
𝑤𝑤3

+
𝐷𝐷13 0 −𝐷𝐷13

0 𝐷𝐷23 −𝐷𝐷23
−𝐷𝐷13 −𝐷𝐷23 𝐷𝐷13 + 𝐷𝐷23

�̇�𝑤1
�̇�𝑤2
�̇�𝑤3

+
𝐾𝐾12 + 𝐾𝐾13 −𝐾𝐾12 −𝐾𝐾13
−𝐾𝐾12 𝐾𝐾12 0
−𝐾𝐾13 0 𝐾𝐾13

𝑤𝑤1
𝑤𝑤2
𝑤𝑤3

=
0
𝑢𝑢2
0
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polynomial  



Mass-spring-damper system
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polynomial  

This fully fits in the earlier module representation: 

with the additional condition that: 

polynomial  
symmetric, diagonal



Module representation
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Consequences for node interactions:

• Node interactions come in pairs of modules
• Where numerators are the same

Framework for network identification remains the same

• Symmetry can be incorporated in identifiability/identification

[1] E.M.M. Kivits et al., CDC 2019.



Polynomial representation
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More attractive:  stay within the polynomial domain (discrete-time now) 

with               symmetric and nonmonic 

i.e. 

with 



Network identifiability[1]
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New analysis, based on              only (noise discarded because of algebraic loops):

Identifiability conditions:
• At least 1 excitation signal          present

[1] E.M.M. Kivits and PVdH, TAC 2023.

• and               left coprime
• diagonality constraint on 
• symmetric
• 1 parametric constraint in               or              

• present
• unimodular
• diagonal

•
•



Polynomial representation - identifiability
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• Identifiability conditions are strongly relaxed (compared to module framework)
in terms of number of excitation signals required.

• Diffusive couplings strongly limit the degrees of freedom in the network model

• Identification algorithms are available for both full network[1] and local
identification[2].

[1] E.M.M. Kivits and PVdH, TAC 2023.
[2] E.M.M. Kivits and PVdH, CDC 2022.



Summary diffusively coupled networks

• Interesting class of models, not extensively studied in identification

• Non-directed graphs

• Adhering to physical interconnections

• Framework is fit for representing combined networks
(combining physical bi-directional links, and cyber uni-directional links)[1].

52

[1] E.M.M. Kivits, PhD-Thesis 2024 (to appear).



Algorithms implemented in SYSDYNET Toolbox

53
Beta-version 0.2.0, September 2023, to be downloaded from www.sysdynet.net

Structural analysis and operations 
on dynamic module networks

• Edit and manipulate
• Assign properties to nodes

and modules
• Immersion of nodes, PPL test
• Generic identifiability analysis 

and synthesis
• Predictor model selection for

single module ID

to be complemented with
• estimation algorithms for

single module and 
full network ID;

• topology estimation

http://www.sysdynet.net/


ERC SYSDYNET Team: data-driven modeling in dynamic networks
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The end
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