Data-driven model learning in linear dynamic networks

Paul Van den Hof

ICMS Symposium, “Getting a grip on complex systems”
4 April 2022, Eindhoven

www.sysdynet.eu
www.pvandenhoef.nl
p.m.j.vandenhof@tue.nl
Introduction – dynamic networks

Decentralized process control

Smart power grid

Complex machines

Brain network

Hydrocarbon reservoirs

Pierre et al. (2012)

Mansoori (2014)

P. Hagmann et al. (2008)
Introduction

Overall trend:

- (Large-scale) interconnected dynamic systems
- Distributed / multi-agent type monitoring, control and optimization problems
- Data is “everywhere”, big data era, AI/machine learning tools
- Model-based operations require accurate/relevant models
- → Learning models from data (including physical insights when available)
Introduction

Drivers for data-processing / data-analytics:

Providing the tools for **online**
- Model estimation / calibration / adaptation

to accurately perform online model-based X:
- Monitoring
- Diagnosis and fault detection
- Control and optimization
- Predictive maintenance
-
Introduction

Distributed / multi-agent control:

With both physical and communication links between systems G_i and controllers C_i

How to address data-driven modelling problems in such a setting?
Introduction

The classical (multivariable) data-driven modeling problems\(^1\):

Identify a model of \(G \) on the basis of measured signals \(u, y \) (and possibly \(r \)), focusing on continuous LTI dynamics.

In interconnected systems (networks) the \textbf{structure / topology} becomes important to include.

\(^{[1]}\) Ljung (1999), Söderström and Stoica (1989), Pintelon and Schoukens (2012)
Contents

• Introduction and motivation
• How to model a dynamic network?
• Single module identification
• Global network identification
• Diffusively coupled networks
• Extensions - Discussion
Dynamic networks for data-driven modeling
Network models

D. Materassi and M.V. Salapaka (2012)
R.N. Mantegna (1999)
www.momo.cs.okayama-u.ac.jp
D. Koller and N. Friedman (2009)
J.C. Willems (2007)
E.A. Carara and F.G. Moraes (2008)
P.E. Paré et al (2013)
X. Cheng (2019)
Network models

\[
x(k + 1) = Ax(k) + Bu(k) \\
y(k) = Cx(k) + Du(k)
\]

- States as nodes in a (directed graph)
- State transitions (1 step in time) reflected by \(a_{i,j} \)
- Transitions are encoded in links
- Effect of transitions are summed in the nodes
- Self loops are allowed
- Actuation (\(u \)) and sensing (\(y \)) reflected by separate links

State space representation
Network models

\[x(k + 1) = Ax(k) + Bu(k) \]
\[y(k) = Cx(k) + Du(k) \]

- Ultimate break-down of structure in the system
- To smallest possible level of detail

For data-driven modeling problems:

- Stronger role for measurable inputs and outputs
- I/o dynamics can be lumped in dynamic **modules**
Network models

State space representation [1]

Module representation [2]

Dynamic network models - zooming

Decreasing structural information

Increasing level of detail
Dynamic network setup

- v_i: process noise
- w_i: node signal
- r_i: external excitation
- G_{ij}: module
Dynamic network setup

G_{76} module
r_i external excitation
v_i process noise
w_i node signal
Dynamic network setup

- G_{76}: module
- r_i: external excitation
- v_i: process noise
- w_i: node signal
Dynamic network setup

G_{76} module

r_i external excitation

v_i process noise

w_i node signal
Dynamic network setup

\[r_i \quad \text{external excitation} \]

\[v_i \quad \text{process noise} \]

\[w_i \quad \text{node signal} \]
Dynamic network setup

Basic building block:

\[
w_j(t) = \sum_{k \in \mathcal{N}_j} G_{jk}^0(q) w_k(t) + r_j(t) + v_j(t)
\]

\(w_j\): node signal
\(r_j\): external excitation signal
\(v_j\): (unmeasured) disturbance, stationary stochastic process
\(G_{jk}^0\): module, rational proper transfer function, \(\mathcal{N}_j \subset \{\mathbb{Z} \cap [1, L]\}\backslash \{j\}\)
\(q\): shift operator, \(q^{-1}w(t) = w(t - 1)\)

Node signals: \(w_1, \cdots, w_L\)

Interconnection structure / topology of the network is encoded in \(\mathcal{N}_j, j = 1, \cdots, L\)
Dynamic network setup

Collecting all equations:

\[
\begin{bmatrix}
 w_1 \\
 w_2 \\
 \vdots \\
 w_L
\end{bmatrix} = \begin{bmatrix}
 0 & G^0_{12} & \cdots & G^0_{1L} \\
 G^0_{21} & 0 & \cdots & G^0_{2L} \\
 \vdots & \vdots & \ddots & \vdots \\
 G^0_{L1} & G^0_{L2} & \cdots & 0
\end{bmatrix} + R^0 \begin{bmatrix}
 r_1 \\
 r_2 \\
 \vdots \\
 r_K
\end{bmatrix} + H^0 \begin{bmatrix}
 e_1 \\
 e_2 \\
 \vdots \\
 e_p
\end{bmatrix}
\]

Network matrix $G^0(q)$

\[w(t) = G^0(q)w(t) + R^0(q)r(t) + v(t); \quad v(t) = H^0(q)e(t); \quad \text{cov}(e) = \Lambda\]

- Typically R^0 is just a (static) selection matrix, indicating which nodes have an excitation signal.
- The topology of the network is encoded in the structure (non-zero entries) of G^0.
- r and e are called external signals.
Dynamic network setup

Many challenging data-driven modeling questions can be formulated

Measured time series:
\[\{ w_i(t) \}_{i=1,...,L}; \ \{ r_j(t) \}_{j=1,...,K} \]
Model learning problems

Under which conditions can we estimate the topology and/or dynamics of the full network?
How/when can we learn a local module from data (with known/unknown network topology)? Which signals to measure?
Model learning problems

Where to optimally locate sensors and actuators?
Model learning problems

Same questions for a subnetwork
Model learning problems

How can we benefit from known modules?
Model learning problems

Fault detection and diagnosis; detect/handle nonlinear elements
Model learning problems

Can we distribute the computations?
Dynamic network setup

- Identification of a local module (known topology)
- Identification of the full network
- Topology estimation
- Identifiability
- Sensor and excitation allocation
- Fault detection
- User prior knowledge of modules
- Distributed identification
- Scalable algorithms

Measured time series:
\[\{w_i(t)\}_{i=1,...L}; \quad \{r_j(t)\}_{j=1,...K} \]
Dynamic network setup – directed graph

Nodes are vertices; modules/links are edges

Extended graph:
including the external signals
and disturbance correlations
Application: Networks of (damped) oscillators

- Power systems, vehicle platoons, thermal building dynamics, ...
- Spatially distributed
- Bilaterally coupled
Application: Printed Circuit Board (PCB) Testing

Detection of
• component failures
• parasitic effects

Source: Altium
Contents

• Introduction and motivation
• How to model a dynamic network?
• Single module identification
• Global network identification
• Diffusively coupled networks
• Extensions - Discussion
Single module identification
For a network with known topology:

• Identify G_{21}^0 on the basis of measured signals
• Which signals to measure? Preference for local measurements
• When is there enough excitation / data informativity?
Naïve approach: identify based on w_1 and w_2: in general does not work.
Identifying G^0_{21} is part of a 4-input, 1-output problem

If noises v_k are correlated it may even be part of a MIMO problem
Single module identification

Input signals will be correlated:
similar as in a closed-loop situation

What is required for
identifiability / data informativity?

Ability to distinguish between models
independent of id-method

Information content of signals
dependent on id-method

Identifiying G^0_{21} is part of a
4-input, 1-output problem
Single module identification

Identifying G_{21}^0 is part of a 4-input, 1-output problem

All parallel paths, and loops around the output, plus input w_1 should have an independent external signal r or v and typically need to be blocked by a measured node

[1] Weerts et al., Automatica 2018, CDC 2018
[4] Shi et al., Automatica 2022
Single module identification

All inputs require an independent excitation (through vertex disjoint paths) from r, e

If excitation is relying on disturbances and correlated to v_2

To be handled by:
- Adding more input signals (blocking the cv)
- Including the input as output (MIMO) [3]

Confounding variable [1][2]

Single module identification

Typical solution:

- MISO (sometimes MIMO) estimation problem
- to be solved by any (closed-loop) identification algorithm, e.g. direct/indirect method
Machine learning in local module identification

- MISO identification with all modules parameterized
- Brings in two major problems:
 - Large number of parameters to estimate
 - Model order selection step for each module (CV, AIC, BIC)

- For 5 modules, combinations = 244,140,625

 Increases variance
 Computationally challenging

- We need only the target module. No NUISANCE!
Maximize marginal likelihood of output data: $\hat{\eta} = \arg\max \ p(w_j; \eta)$

$\eta := [\theta \ \lambda_j \ \lambda_{k_1} \ \ldots \ \lambda_{k_p} \ \beta_j \ \beta_{k_1} \ \ldots \ \beta_{k_p} \ \sigma_j^2]^T$

- smaller no. of parameters
- simpler model order selection step
- scalable to large dynamic networks
- simpler optimization problems to estimate parameters

Numerical simulation

- Identify G_{31} given data
- 50 independent MC simulation
- Data = 500
Summary single module identification

• Path-based conditions for **network identifiability** (where to excite?)

• Graph tools for checking conditions

• Degrees of freedom in selection of measured signals – sensor selection

• Methods for **consistent** and **minimum variance** module estimation, and effective (scalable) algorithms

• A priori known modules can be accounted for
Contents

• Introduction and motivation
• How to model a dynamic network?
• Single module identification
• Global network identification
• Diffusively coupled networks
• Extensions - Discussion
Under which conditions can we estimate the topology and/or dynamics of the full network?
Network identifiability

Question: Can different dynamic networks be distinguished from each other from measured signals w, r?
Network identifiability

The identifiability problem:

The network model:

\[w(t) = G(q)w(t) + R(q)r(t) + \underbrace{H(q)e(t)}_{v(t)} \]

can be transformed with any rational \(P(q) \):

\[P(q)w(t) = P(q)\{G(q)w(t)+R(q)r(t)+H(q)e(t)\} \]

to an equivalent model:

\[w(t) = \tilde{G}(q)w(t) + \tilde{R}(q)r(t) + \tilde{H}(q)e(t) \]

Nonuniqueness, unless there are structural constraints on \(G, R, H \).

[2] Bottegal et al., SYSID 2017
Network identifiability

Consider a network model set:

$$\mathcal{M} = \{(G(\theta), R(\theta), H(\theta))\}_{\theta \in \Theta}$$

representing structural constraints on the considered models:

- modules that are fixed and/or zero (topology)
- locations of excitation signals
- disturbance correlation

Generic identifiability of \mathcal{M}:

- There do not exist distinct equivalent models (generating the same data)
- for almost all models in the set.

[1] Weerts et al., SYSID2015; Weerts et al., Automatica, March 2018;
Example 5-node network

Conditions for identifiability rank conditions on transfer function

Full row rank of

\[
\begin{bmatrix}
 v_3 \\
r_4 \\
r_5
\end{bmatrix} \rightarrow \begin{bmatrix}
w_2 \\
w_5
\end{bmatrix}
\]

For the **generic case**, the rank can be calculated by a graph-based condition\(^1,\)^2:

Generic rank = number of vertex-disjoint paths

2 vertex-disjoint paths \rightarrow full row rank 2

The rank condition has to be checked for all nodes.

\(^1\) Van der Woude, 1991
\(^2\) Hendrickx, Gevers & Bazanella, CDC 2017, TAC 2019
Synthesis solution for network identifiability

Allocating external signals for generic identifiability:

1. Cover the graph of the network model set by a set of disjoint pseudo-trees
 Pseudo-trees:
 Tree with root in green
 Cycle with outgoing trees; Any node in cycle is root
 Edges are disjoint and all out-neighbours of a node are in the same pseudo-tree

2. Assign an independent external signal (\(r \) or \(e \)) at a root of each pseudo-tree.
 This guarantees generic identifiability of the model set.

Where to allocate external excitations for network identifiability?

All indicated modules are parametrized

Two disjoint pseudo-trees
Where to allocate external excitations for network identifiability?

Two independent excitations guarantee generic network identifiability

Where to allocate external excitations for network identifiability?

- Nodes are signals w and external signals (r, e) that are input to parametrized link
- Known (nonparametrized) links do not need to be covered

Summary identifiability of full network

Identifiability of network model sets is determined by

- Presence and location of external signals, and
- Correlation of disturbances
- Topology of parametrized modules

- Graphic-based tool for synthesizing allocation of external signals

Extensions:
- Situations where not all node signals are measured \(^1\)

\(^1\) Bazanella, CDC 2019.
Algorithms for identification of full network

(Prediction error) identification methods will typically lead to large-scale non-convex optimization problems

Convex relaxation algorithms are being developed[1,2] as well as machine learning tools

[1] Weerts, Galrinho et al., SYSID 2018
[2] Fonken et al., Automatica 2022, to appear.
Topology identification

• Topology resulting from full dynamic model

• Alternative: non-parametric models (Wiener filters\[^1\]) or kernel-based approaches\[^2\][\[^3\]]

• Modeling module dynamics by Gaussian processes,

 kernel with 2 parameters for each dynamic module

• Optimizing likelihood of the data as function of parameters and topology:

\[p(\{w(t)\}_{t=1}^{N}|\theta, \mathcal{G}) \]

• Forward-backward search over topologies + empirical Bayes (EM) for parameters

[3] Shi, Bottegal, PVdH, ECC 2019
Topology identification

50 MC realizations of network with 6 nodes.

[1] Shi, Bottegal, PVdH, ECC 2019
Neurodynamic effect of listening to Mozart music

Identifying changes in network connections in the brain, after intensely listening for one week

Contents

• Introduction and motivation
• How to model a dynamic network?
• Single module identification
• Global network identification
• Diffusively coupled networks
• Extensions - Discussion
Diffusively coupled networks
Back to the basics of physical interconnections

In connecting physical systems, there is often no predetermined direction of information \[1\]

Example: resistor / spring connection in electrical / mechanical system:

\[
I = \frac{1}{R} (V_1 - V_2)
\]

\[
F = K (x_1 - x_2)
\]

Difference of node signals drives the interaction: **diffusive coupling**

Diffusively coupled physical network

Equation for node j:

$$M_j \ddot{w}_j(t) + D_{j0} \dot{w}_j(t) + \sum_{k \neq j} D_{jk}(\dot{w}_j(t) - \dot{w}_k(t)) + K_{j0} w_j(t) + \sum_{k \neq j} K_{jk}(w_j(t) - w_k(t)) = u_j(t),$$
Mass-spring-damper system

- Masses M_j
- Springs K_{jk}
- Dampers D_{jk}
- Input u_j

\[
\begin{bmatrix}
 M_1 & M_2 & M_3 \\
 M_2 & M_3 & M_3 \\
 M_3 & M_3 & M_3
\end{bmatrix}
\begin{bmatrix}
 \ddot{w}_1 \\
 \ddot{w}_2 \\
 \ddot{w}_3
\end{bmatrix} + \begin{bmatrix}
 0 & D_{20} & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 \dot{w}_1 \\
 \dot{w}_2 \\
 \dot{w}_3
\end{bmatrix} + \begin{bmatrix}
 0 & K_{10} & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 w_1 \\
 w_2 \\
 w_3
\end{bmatrix} \\
+ \begin{bmatrix}
 D_{13} & 0 & -D_{13} \\
 0 & D_{23} & -D_{23} \\
 -D_{13} & -D_{23} & D_{13} + D_{23}
\end{bmatrix}
\begin{bmatrix}
 \ddot{w}_1 \\
 \ddot{w}_2 \\
 \ddot{w}_3
\end{bmatrix} + \begin{bmatrix}
 K_{12} + K_{13} & -K_{12} & -K_{13} \\
 -K_{12} & K_{12} & 0 \\
 -K_{13} & 0 & K_{13}
\end{bmatrix}
\begin{bmatrix}
 w_1 \\
 w_2 \\
 w_3
\end{bmatrix} = \begin{bmatrix}
 0 \\
 u_2 \\
 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
 A(p) \\
 B(p)
\end{bmatrix}_{diagonal, \text{Laplacian}} w(t) = u(t) \quad A(p), B(p) \text{ polynomial} \quad p = \frac{d}{dt}
\]
Mass-spring-damper system

\[
\begin{bmatrix}
A(p) + B(p)
\end{bmatrix} w(t) = u(t) \quad A(p), B(p) \text{ polynomial}
\]

\[
\begin{bmatrix}
Q(p) - P(p)
\end{bmatrix} w(t) = u(t)
\]

This fully fits in the earlier module representation:

\[
w(t) = Gw(t) + \underbrace{Rr(t) + He(t)}_{Q^{-1}(p)u(t)}
\]

with the additional condition that:

\[G(p) = Q(p)^{-1}P(p)\] \quad \text{\(Q(p), P(p)\) polynomial}

\[P(p)\text{ symmetric, } Q(p)\text{ diagonal}\]
Module representation

Consequences for node interactions:

- Node interactions come in pairs of modules
- Where numerators are the same

Framework for network identification remains the same

- Symmetry can simply be incorporated in identification
Local network identification

Identification of **one** (physical) interconnection

Identification of **two** modules G_{jk} and G_{kj}
Immersion conditions

For simultaneously identifying two modules in one interconnection:

The parallel path and loops-around-the-output condition, now simplifies to:

Measuring/exciting all neighbouring nodes of \(w_2 \) and \(w_3 \) leads to a solution

E.E.M. Kivits et al., CDC 2019.
Summary diffusively coupled networks

• Diffusively coupled networks fit within the module framework (special case)
 - no restriction to second order equations

• Earlier identification framework can be utilized

• Local identification is well-addressed (and stays really local)

• Framework is fit for representing cyber-physical systems
 (combining physical bi-directional links, and cyber uni-directional links).
Extensions - Discussion
Extensions - Discussion

• Including sensor noise \[^{[1]}\]
 • Errors-in-variabeals problems can be more easily handled in a network setting

• Distributed estimation (MISO models) \[^{[2]}\]
 • Communication constraints between different agents
 • Recursive (distributed) estimator converges to global optimizer (more slowly)

• Experiment design \[^{[3],[4]}\]
 • design of least costly experiments

Summary

• **Dynamic network modeling:**
 intriguing research topic with many open questions
• The (centralized) LTI framework is only just the beginning
• Further move towards data-aspects related to distributed control
• and large-scale aspects
• and more real-life applications
Matlab Toolbox
ERC SYSDYNET Team: data-driven modeling in dynamic networks

Research team:

Karthik Ramaswamy
Arne Dankers
Harm Weerts
Shengling Shi
Giulio Bottegal
Xiaodong Cheng
Mannes Dreef
Lizan Kivits
Tom Steentjes
Stefanie Fonken
Mircea Lazar
Tijs Donkers
Jobert Ludlage

Co-authors, contributors and discussion partners:
Donatello Materassi, Manfred Deistler, Michel Gevers, Jonas Linder, Sean Warnick, Alessandro Chiuso, Håkan Hjalmarsson, Miguel Galrinho, Martin Enqvist, Johan Schoukens, Xavier Bombois, Peter Heuberger, Péter Csurcsia
Minneapolis, Vienna, Louvain-la-Neuve, Linkoping, KTH Stockholm, Padova, Brussels, Salt Lake City, Lyon.
Further reading

Papers available at www.pvandenhof.nl
The end