

Introduction – dynamic networks

Decentralized process control

Thermal power plant hydraulic power generation **Smart Grid** Cities and offices

Smart power grid

Complex machines

Brain network

Wind generator

P. Hagmann et al. (2008)

Hydrocarbon reservoirs

Overall trend:

- (Large-scale) interconnected dynamic systems
- Distributed / multi-agent type monitoring, control and optimization problems
- Data is "everywhere", big data era, AI/machine learning tools
- Model-based operations require accurate/relevant models
- Learning models from data (including physical insights when available)

Drivers for data-processing / data-analytics:

Providing the tools for online

Model estimation / calibration / adaptation

to accurately perform online model-based X:

- Monitoring
- Diagnosis and fault detection
- Control and optimization
- Predictive maintenance
-

Distributed / multi-agent control:

With both physical and communication links between systems G_i and controllers C_i

How to address data-driven modelling problems in such a setting?

The classical (multivariable) data-driven modeling problems [1]:

Identify a model of G on the basis of measured signals u, y (and possibly r), focusing on *continuous LTI dynamics*.

In interconnected systems (networks) the **structure / topology** becomes important to include

Contents

- Introduction and motivation
- How to model a dynamic network?
- Single module identification
- Global network identification
- Diffusively coupled networks
- Extensions Discussion

Dynamic networks for data-driven modeling

R.N. Mantegna (1999)

State space representation

$$x(k+1) = Ax(k) + Bu(k)$$
$$y(k) = Cx(k) + Du(k)$$

- States as **nodes** in a (directed graph)
- State transitions (1 step in time) reflected by a_{ij}
- Transitions are encoded in links
- Effect of transitions are summed in the nodes
- Self loops are allowed
- Actuation (u) and sensing (y) reflected by separate links

State space representation

$$x(k+1) = Ax(k) + Bu(k)$$
$$y(k) = Cx(k) + Du(k)$$

- Ultimate break-down of structure in the system
- to smallest possible level of detail

For data-driven modeling problems:

- Stronger role for measurable inputs and outputs
- i/o dynamics can be lumped in dynamic modules

State space representation [1]

Module representation [2]

Dynamic network models - zooming

Basic building block:

$$w_j(t) = \sum_{k \in \mathcal{N}_j} G^0_{jk}(q) w_k(t) + r_j(t) + v_j(t)$$

 w_i : node signal

 r_i : external excitation signal

 v_j : (unmeasured) disturbance, stationary stochastic process

 G^0_{jk} : module, rational proper transfer function, $\mathcal{N}_j \subset \{\mathbb{Z} \cap [1,L] ackslash \{j\}\}$

q: shift operator, $q^{-1}w(t) = w(t-1)$

Node signals: $w_1, \cdots w_L$

Interconnection structure / topology of the network is encoded in $\mathcal{N}_j,\ j=1,\cdots L$

Collecting all equations:

$$\begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_L \end{bmatrix} = \begin{bmatrix} 0 & G_{12}^0 & \cdots & G_{1L}^0 \\ G_{21}^0 & 0 & \cdots & G_{2L}^0 \\ \vdots & \cdots & \cdots & \vdots \\ G_{L1}^0 & G_{L2}^0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_L \end{bmatrix} + R^0 \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_K \end{bmatrix} + H^0 \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_p \end{bmatrix}$$
Network matrix $G^0(q)$

$$w(t)=G^0(q)w(t)+R^0(q)r(t)+v(t); \hspace{0.5cm} v(t)=H^0(q)e(t); \hspace{0.5cm} cov(e)=\Lambda$$

- Typically ${m R^0}$ is just a (static) selection matrix, indicating which nodes have an excitation signal.
- The topology of the network is encoded in the structure (non-zero entries) of G^0 .
- r and e are called external signals.

Many challenging data-driven modeling questions can be formulated

Measured time series:

$$\{w_i(t)\}_{i=1,\dots L}; \ \{r_j(t)\}_{j=1,\dots K}$$

Under which conditions can we estimate the topology and/or dynamics of the full network?

How/when can we learn a local module from data (with known/unkown network topology)? Which signals to measure?

Where to optimally locate sensors and actuators?

Same questions for a subnetwork

How can we benefit from known modules?

Fault detection and diagnosis; detect/handle nonlinear elements

Can we distribute the computations?

Measured time series:

$$\{w_i(t)\}_{i=1,\dots L}; \{r_j(t)\}_{j=1,\dots K}$$

Many challenging data-driven modeling questions can be formulated

- Identification of a local module (known topology)
- Identification of the full network
- Topology estimation
- Identifiability
- Sensor and excitation allocation
- Fault detection
- User prior knowledge of modules
- Distributed identification
- Scalable algorithms

Dynamic network setup – directed graph

Nodes are vertices; modules/links are edges

Extended graph:

including the external signals and disturbance correlations

Application: Networks of (damped) oscillators

- Power systems, vehicle platoons, thermal building dynamics, ...
- Spatially distributed
- Bilaterally coupled

Application: Printed Circuit Board (PCB) Testing

Detection of

- component failures
- parasitic effects

Contents

- Introduction and motivation
- How to model a dynamic network?
- Single module identification
- Global network identification
- Diffusively coupled networks
- Extensions Discussion

Single module identification

Single module identification

For a network with known topology:

- Identify G_{21}^0 on the basis of measured signals
- Which signals to measure?
 Preference for local measurements
- When is there enough excitation / data informativity?

Single module identification

Naïve approach: identify based on w_1 and w_2 : in general does not work.

If noises $\boldsymbol{v_k}$ are correlated it may even be part of a MIMO problem

Identifiying G_{21}^0 is part of a 4-input, 1-output problem

Identifying G_{21}^0 is part of a 4-input, 1-output problem

Input signals will be correlated:

similar as in a closed-loop situation

What is required for identifiability / data informativity?

Ability to distinguish between models independent of id-method

Information content of signals dependent on id-method

All parallel paths, and loops around the output, plus input w_1 should have an independent external signal r or v and typically need to be blocked by a measured node

Identifying G_{21}^0 is part of a 4-input, 1-output problem

^[3] Dankers et al., TAC 2016

^[1] Weerts et al., Automatica 2018, CDC 2018

^[2] Bazanella et al. CDC2017; Hendrickx et al., IEEE-TAC, 2019.

All inputs require an independent excitation (through vertex disjoint paths) from $r,\,e$

If excitation is relying on disturbances and correlated to $oldsymbol{v}_2$

To be handled by:

- Adding more input signals (blocking the cv)
- Including the input as output (MIMO) [3]

Typical solution:

- MISO (sometimes MIMO) estimation problem
- to be solved by any (closed-loop) identification algorithm, e.g. direct/indirect method

Machine learning in local module identification

- MISO identification with all modules parameterized
- Brings in two major problems :
 - Large number of parameters to estimate
 - Model order selection step for each module (CV, AIC, BIC)
- For 5 modules, combinations = 244,140,625

We need only the target module. No NUISANCE!

Machine learning in local module identification

- smaller no. of parameters
- simpler model order selection step
- scalable to large dynamic networks
- simpler optimization problems to estimate parameters

Maximize marginal likelihood of output data: $\hat{\eta} = \underset{n}{\operatorname{argmax}} p(w_j; \eta)$

$$\eta \coloneqq \begin{bmatrix} \theta & \lambda_j & \lambda_{k_1} & \dots & \lambda_{k_p} & \beta_j & \beta_{k_1} & \dots & \beta_{k_p} & \sigma_j^2 \end{bmatrix}^\mathsf{T}$$

TU/e

^[1] Everitt et al., Automatica 2017.

^[2] K.R. Ramaswamy et al., Automatica, 2021.

Numerical simulation

- Identify G_{31} given data
- 50 independent MC simulation
- ▶ Data = 500

Summary single module identification

- Path-based conditions for network identifiability (where to excite?)
- Graph tools for checking conditions
- Degrees of freedom in selection of measured signals sensor selection
- Methods for consistent and minimum variance module estimation, and effective (scalable) algorithms
- A priori known modules can be accounted for

Contents

- Introduction and motivation
- How to model a dynamic network?
- Single module identification
- Global network identification
- Diffusively coupled networks
- Extensions Discussion

Full network identification

Under which conditions can we estimate the topology and/or dynamics of the full network?

Network identifiability

blue = unknown red = known

Question: Can different dynamic networks be *distinguished* from each other from measured signals *w*, *r*?

Network identifiability

The identifiability problem:

The network **model**:

$$w(t) = G(q)w(t) + R(q)r(t) + \underbrace{H(q)e(t)}_{v(t)}$$

can be transformed with any rational P(q):

$$P(q)w(t) = P(q)\{G(q)w(t) + R(q)r(t) + H(q)e(t)\}$$

to an **equivalent model**:

$$w(t) = ilde{G}(q)w(t) + ilde{R}(q)r(t) + ilde{H}(q)e(t)$$

Nonuniqueness, unless there are structural constraints on G, R, H.

^[1] Weerts, Linder et al., Automatica, 2019.

Network identifiability

Consider a **network model set**:

$$\mathcal{M} = \{(G(\theta), R(\theta), H(\theta))\}_{\theta \in \Theta}$$

representing structural constraints on the considered models:

- modules that are fixed and/or zero (topology)
- locations of excitation signals
- disturbance correlation

Generic identifiability of ${\mathcal M}$:

- There do not exist distinct equivalent models (generating the same data)
- for almost all models in the set.

^[1] Weerts et al., SYSID2015; Weerts et al., Automatica, March 2018;

^[2] Bazanella, CDC2017; Hendrickx et al., IEEE-TAC, 2019.

Example 5-node network

Conditions for identifiability rank conditions on transfer function

Full row rank of

$$egin{bmatrix} v_3 \ r_4 \ r_5 \end{bmatrix}$$
 $loom egin{bmatrix} w_2 \ w_5 \end{bmatrix}$

For the **generic case**, the rank can be calculated by a graph-based condition^{[1],[2]}:

Generic rank = number of vertex-disjoint paths

2 vertex-disjoint paths → full row rank 2

The rank condition has to be checked for all nodes.

^[1] Van der Woude, 1991

^[2] Hendrickx, Gevers & Bazanella, CDC 2017, TAC 2019

Synthesis solution for network identifiability

Allocating external signals for generic identifiability:

1. Cover the graph of the network model set by a set of disjoint pseudo-trees

Edges are disjoint and all out-neighbours of a node are in the same pseudo-tree

2. Assign an independent external signal ($m{r}$ or $m{e}$) at a root of each pseudo-tree.

This guarantees generic identifiability of the model set.

Where to allocate external excitations for network identifiability?

All indicated modules are parametrized

Two disjoint pseudo-trees

Where to allocate external excitations for network identifiability?

Two independent excitations guarantee generic network identifiability

Where to allocate external excitations for network identifiability?

- Nodes are signals w and external signals (r,e) that are input to parametrized link
- Known (nonparametrized) links do not need to be covered

Summary identifiability of full network

Identifiability of network model sets is determined by

- Presence and location of external signals, and
- Correlation of disturbances
- Topology of parametrized modules
- Graphic-based tool for synthesizing allocation of external signals

Extensions:

Situations where not all node signals are measured [1]

Algorithms for identification of full network

(Prediction error) identification methods will typically lead to large-scale **non-convex** optimization problems

Convex relaxation algorithms are being developed^[1,2] as well as machine learning tools

^[1] Weerts, Galrinho et al., SYSID 2018

Topology identification

- Topology resulting from full dynamic model
- Alternative: non-parametric models (Wiener filters [1]) or kernel-based approaches [2][3]

- modeling module dynamics by Gaussian processes,
 kernel with 2 parameters for each dynamic module
- Optimizing likelihood of the data as function of parameters and topology:

$$p(\{w(t)\}_{t=1}^N | heta, \mathcal{G})$$

Forward-backward search over topologies + empirical Bayes (EM) for parameters

[2] Chiuso & Pillonetto, Automatica, 2012.

Topology identification

50 MC realizations of network with 6 nodes.

Neurodynamic effect of listening to Mozart music

Identifying changes in network connections in the brain, after intensely listening for one week

Figure 3: Spatial maps of the 20 active brain networks found through the ICA decomposition. Each image consists of 3 relevant horizontal slices of the brain, where the spatial map is indicated by the red color scale.

Contents

- Introduction and motivation
- How to model a dynamic network?
- Single module identification
- Global network identification
- Diffusively coupled networks
- Extensions Discussion

Diffusively coupled networks

Back to the basics of physical interconnections

In connecting physical systems, there is often no predetermined direction of information [1]

Example: resistor / spring connection in electrical / mechanical system:

Resistor Spring
$$I = \frac{1}{R}(V_1 - V_2)$$

$$F = K(x_1 - x_2)$$

Difference of node signals drives the interaction: diffusive coupling

Diffusively coupled physical network

Equation for node *j*:

$$M_j \ddot{w}_j(t) + D_{j0} \dot{w}_j(t) + \sum_{k \neq j} D_{jk} (\dot{w}_j(t) - \dot{w}_k(t)) + K_{j0} w_j(t) + \sum_{k \neq j} K_{jk} (w_j(t) - w_k(t)) = u_j(t),$$

Mass-spring-damper system

- Masses M_j
- Springs K_{ik}
- Dampers D_{jk}
- Input u_j

$$\begin{bmatrix} M_1 & & \\ & M_2 & \\ & & M_3 \end{bmatrix} \begin{bmatrix} \ddot{w}_1 \\ \ddot{w}_2 \\ \ddot{w}_3 \end{bmatrix} + \begin{bmatrix} 0 & \\ & D_{20} \\ & & \\ & & \end{bmatrix} \begin{bmatrix} \dot{w}_1 \\ \dot{w}_2 \\ \dot{w}_3 \end{bmatrix} + \begin{bmatrix} K_{10} & \\ & 0 \\ & & \\ & & \\ & & \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} \\ + \begin{bmatrix} D_{13} & 0 & -D_{13} \\ 0 & D_{23} & -D_{23} \\ -D_{13} & -D_{23} & D_{13} + D_{23} \end{bmatrix} \begin{bmatrix} \dot{w}_1 \\ \dot{w}_2 \\ \dot{w}_3 \end{bmatrix} + \begin{bmatrix} K_{12} + K_{13} & -K_{12} & -K_{13} \\ -K_{12} & K_{12} & 0 \\ -K_{13} & 0 & K_{13} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} 0 \\ u_2 \\ 0 \end{bmatrix}$$

$$\left[egin{array}{cccc} A(p) &+& B(p) \ diagonal & Laplacian \end{array}
ight] w(t) = u(t) \qquad A(p), B(p) \;\; {\sf polynomial} \qquad p = rac{d}{dt}$$

Mass-spring-damper system

$$[\underbrace{A(p)}_{diagonal} + \underbrace{B(p)}_{Laplacian}] \ w(t) = u(t) \qquad A(p), B(p) \ {\sf polynomial}$$

$$[\underbrace{Q(p)}_{diagonal} - \underbrace{P(p)}_{hollow\&symmetric}] w(t) = u(t)$$

This fully fits in the earlier module representation:

$$w(t) = Gw(t) + \underbrace{Rr(t) + He(t)}_{Q^{-1}(p)u(t)}$$

with the additional condition that:

$$G(p) = Q(p)^{-1}P(p)$$
 $Q(p), P(p)$ polynomial $P(p)$ symmetric, $Q(p)$ diagonal

Module representation

Consequences for node interactions:

- Node interactions come in pairs of modules
- Where numerators are the same

Framework for network identification remains the same

Symmetry can simply be incorporated in identification

Local network identification

Identification of **one** (physical) interconnection Identification of **two** modules G_{jk} and G_{kj} G_{37}

Immersion conditions

For simultaneously identifying two modules in one interconnection:

The parallel path and loops-around-the-output condition, now simplifies to:

Measuring/exciting all neighbouring nodes of w_2 and w_3 leads to a solution

Summary diffusively coupled networks

- Diffusively coupled networks fit within the module framework (special case)
 - no restriction to second order equations
- Earlier identification framework can be utilized
- Local identification is well-addressed (and stays really local)
- Framework is fit for representing **cyber-physical systems** (combining physical bi-directional links, and cyber uni-directional links).

Extensions - Discussion

Extensions - Discussion

- Including sensor noise [1]
 - Errors-in-variabels problems can be more easily handled in a network setting
- Distributed estimation (MISO models) [2]
 - Communication constraints between different agents
 - Recursive (distributed) estimator converges to global optimizer (more slowly)

- Experiment design [3],[4]
 - design of least costly experiments

^[3] Gevers and Bazanella, CDC 2015.

^[2] Steentjes et al., IFAC-NECSYS, 2018.

Summary

- Dynamic network modeling:
 - intriguing research topic with many open questions
- The (centralized) LTI framework is only just the beginning
- Further move towards data-aspects related to distributed control
- and large-scale aspects
- and more real-life applications

Matlab Toolbox

ERC SYSDYNET Team: data-driven modeling in dynamic networks

Research team:

Karthik Ramaswamy

SYSTEM ID ORKS DANKERS

Arne Dankers

Harm Weerts

Shengling Shi

Giulio Bottegal

Xiaodong Cheng

Mannes Dreef

Lizan Kivits Tom Steentjes Stefanie Fonken

Mircea Lazar

Tijs Donkers

Jobert Ludlage

Co-authors, contributors and discussion partners:

Donatello Materassi, Manfred Deistler, Michel Gevers, Jonas Linder, Sean Warnick, Alessandro Chiuso, Håkan Hjalmarsson, Miguel Galrinho, Martin Enqvist, Johan Schoukens, Xavier Bombois, Peter Heuberger, Péter Csurcsia Minneapolis, Vienna, Louvain-la-Neuve, Linkoping, KTH Stockholm, Padova, Brussels, Salt Lake City, Lyon.

Further reading

- P.M.J. Van den Hof, A. Dankers, P. Heuberger and X. Bombois (2013).
 Identification of dynamic models in complex networks with prediction error methods basic methods for consistent module estimates. *Automatica*, Vol. 49, no. 10, pp. 2994-3006.
- A. Dankers, P.M.J. Van den Hof, X. Bombois and P.S.C. Heuberger (2015).
 Errors-in-variables identification in dynamic networks consistency results for an instrumental variable approach. *Automatica*, Vol. 62, pp. 39-50, 2015.
- A. Dankers, P.M.J. Van den Hof, P.S.C. Heuberger and X. Bombois (2016).
 Identification of dynamic models in complex networks with predictior error methods predictor input selection. *IEEE Trans. Autom. Contr.*, 61 (4), pp. 937-952, 2016.
- H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2018). Identifiability of linear dynamic networks. Automatica, 89, pp. 247-258, March 2018.
- H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2018). Prediction error identification of linear dynamic networks with rank-reduced noise. Automatica, 98, pp. 256-268, December 2018.
- H.H.M. Weerts, J. Linder, M. Enqvist and P.M.J. Van den Hof (2019).
 Abstractions of linear dynamic networks for input selection in local module identification. Automatica, Vol. 117, July 2020.
- R.J.C. van Esch, S. Shi, A. Bernas, S. Zinger, A.P. Aldenkamp and P.M.J. Van den Hof (2020). A Bayesian method for inference of effective connectivity in brain networks for detecting the Mozart effect. *Computers in Biology and Medicine*, Vol. 127, paper 104055, December 2020.

- K.R. Ramaswamy, G. Bottegal and P.M.J. Van den Hof (2020). Learning linear models in a dynamic network using regularized kernel-based methods. *Automatica*, Vol. 129, Article 109591, July 2021.
- P.M.J. Van den Hof and K.R. Ramasmwamy (2021). Learning local modules in dynamic networks. Proc. of Machine Learning Res., Vol. 144, pp. 176-188.
- K.R. Ramaswamy and P.M.J. Van den Hof (2021). A local direct method for module identification in dynamic networks with correlated noise. *IEEE Trans. Automatic Control*, Vol. 66, no. 11, pp. 3237-3252, November 2021.
- X. Cheng, S. Shi and P.M.J. Van den Hof (2022). Allocation of excitation signals for generic identifiability of linear dynamic networks. To appear in *IEEE Trans. Automatic Control*, Vol. 67, no. 2, pp. 692-705, February 2022.
- S. Shi, X. Cheng and P.M.J. Van den Hof (2022). Generic identifiability of subnetworks in a linear dynamic network: the full measurement case. *Automatica*, Vol. 117 (110093), March 2022.
- S.J.M. Fonken, K.R. Ramaswamy and P.M.J. Van den Hof (2022). A scalable multi-step least squares method for network identification with unknown disturbance topology. To appear in *Automatica*, July 2022.
- K.R. Ramaswamy, P.Z. Csurcsia, J. Schoukens and P.M.J. Van den Hof (2022). A frequency domain approach for local module identification in dynamic networks. To appear in *Automatica*, October 2022.
- S. Shi, X. Cheng and P.M.J. Van den Hof (2023). Single module identifiability in linear dynamic networks with partial excitation and measurement. To appear in *IEEE Trans. Automatic Control*, January 2023.

The end