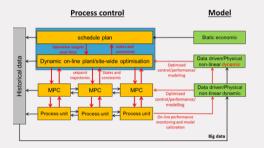






### **Introduction – dynamic networks**

#### Decentralized process control



### Thermal power plant hydraulic power generation **Smart Grid** Cities and offices

#### Smart power grid

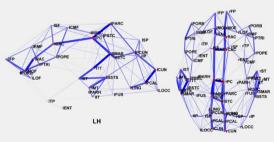




Complex machines



#### Brain network



P. Hagmann et al. (2008)

Hydrocarbon reservoirs





#### Overall trend:

- (Large-scale) interconnected dynamic systems
- Distributed / multi-agent type monitoring, control and optimization problems
- Data is "everywhere", big data era, Al/machine learning tools
- Model-based operations require accurate/relevant models
- > Learning models from data (including physical insights when available)



### Drivers for data-processing / data-analytics:

#### Providing the tools for **online**

Model estimation / calibration / adaptation

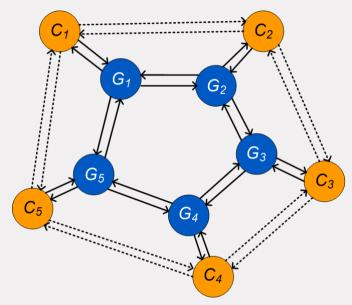
#### to accurately perform online model-based X:

- Monitoring
- Diagnosis and fault detection
- Control and optimization
- Predictive maintenance
- •





Distributed / multi-agent control:

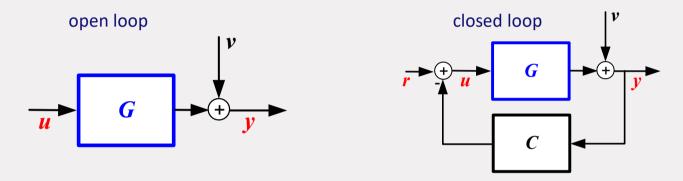


With both physical and communication links between systems  $G_i$  and controllers  $C_i$ 

How to address data-driven modelling problems in such a setting?



The classical (multivariable) data-driven modeling problems [1]:



Identify a model of G on the basis of measured signals u, y (and possibly r), focusing on *continuous LTI dynamics*.

In interconnected systems (networks) the **structure / topology** becomes important to include



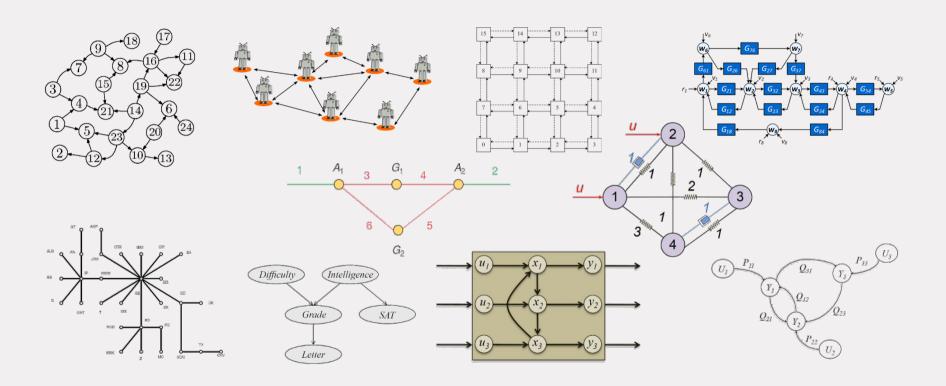


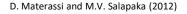
### **Contents**

- Introduction and motivation
- How to model a dynamic network?
- Single module identification
- Global network identification
- Diffusively coupled networks
- Extensions Discussion

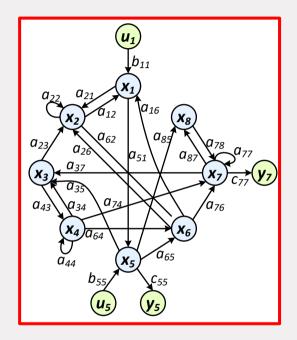


## **Dynamic networks for data-driven modeling**







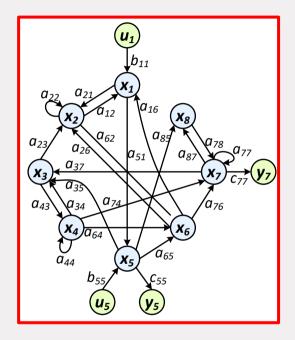


**State space representation** 

$$x(k+1) = Ax(k) + Bu(k)$$
$$y(k) = Cx(k) + Du(k)$$

- States as **nodes** in a (directed graph)
- State transitions (1 step in time) reflected by  $a_{ij}$
- Transitions are encoded in links
- Effect of transitions are summed in the nodes
- Self loops are allowed
- Actuation (u) and sensing (y) reflected by separate links





**State space representation** 

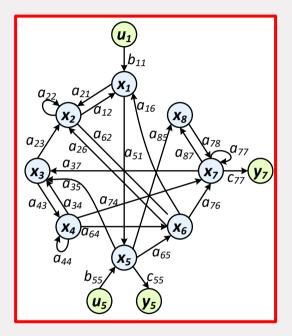
$$x(k+1) = Ax(k) + Bu(k)$$
$$y(k) = Cx(k) + Du(k)$$

- Ultimate break-down of structure in the system
- to smallest possible level of detail

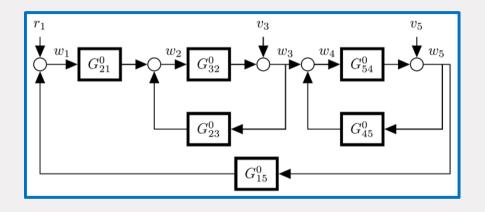
For data-driven modeling problems:

- Stronger role for measurable inputs and outputs
- i/o dynamics can be lumped in dynamic modules





State space representation [1]



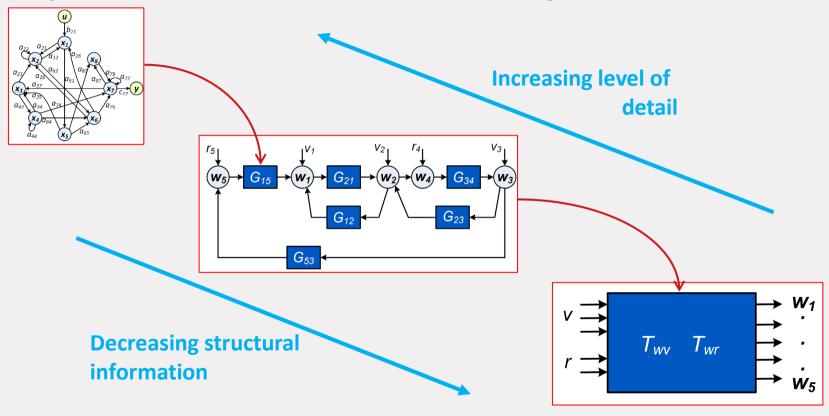
**Module representation** [2]



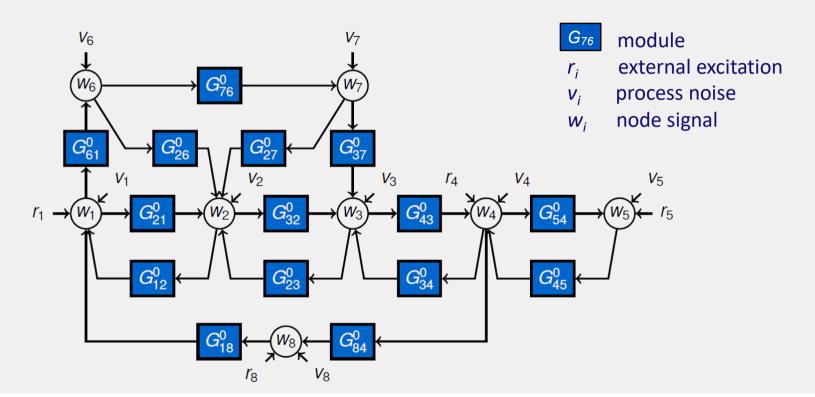




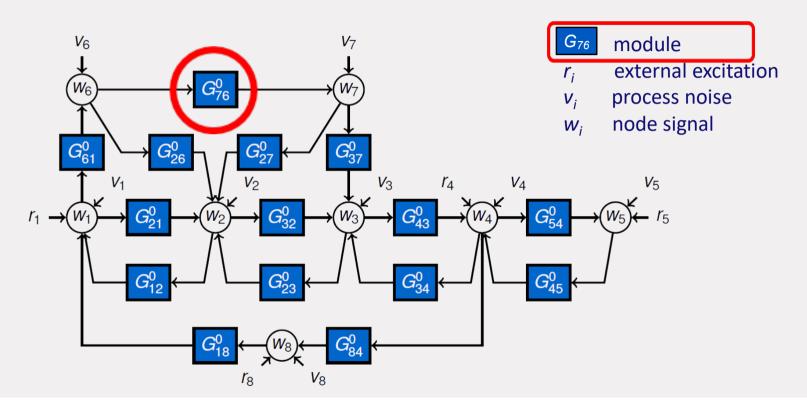
# **Dynamic network models - zooming**



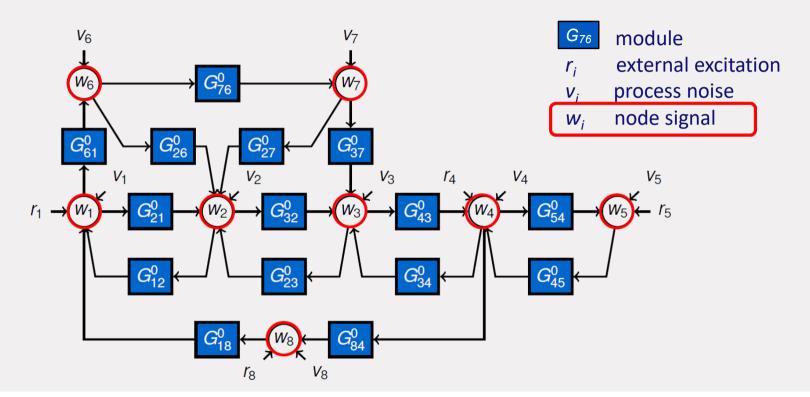




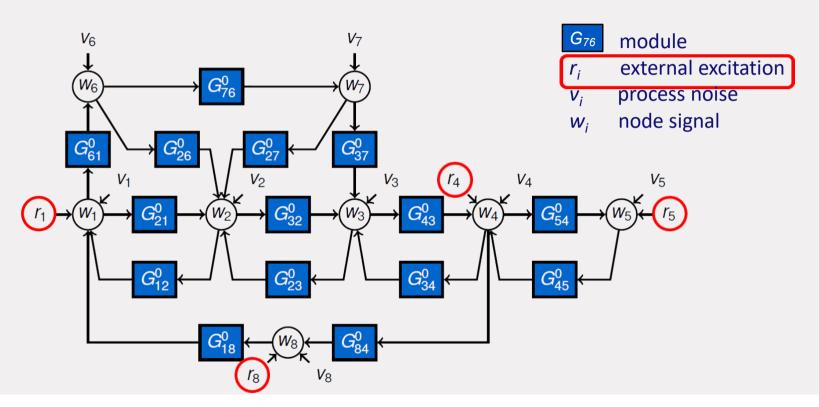




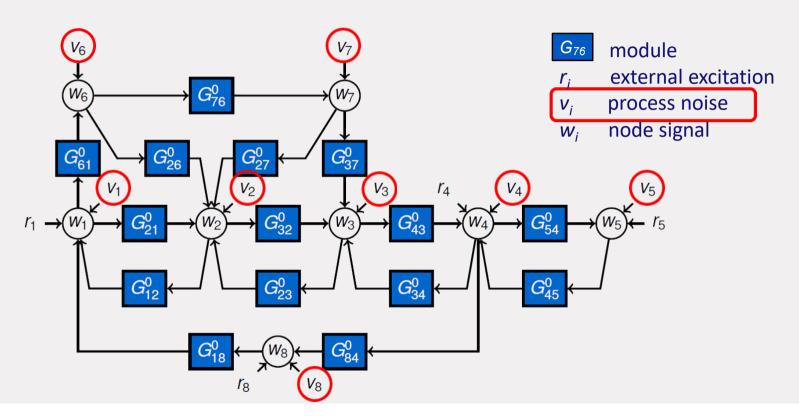














#### **Basic building block:**

$$w_j(t) = \sum_{k \in \mathcal{N}_j} G^0_{jk}(q) w_k(t) + r_j(t) + v_j(t)$$

 $w_j$ : node signal

 $r_j$ : external excitation signal

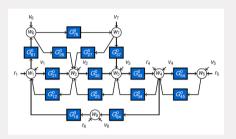
 $v_j$ : (unmeasured) disturbance, stationary stochastic process

 $G^0_{jk}$ : module, rational proper transfer function,  $\mathcal{N}_j \subset \{\mathbb{Z} \cap [1,L] ackslash \{j\}\}$ 

q: shift operator,  $q^{-1}w(t)=w(t-1)$ 

Node signals:  $w_1, \cdots w_L$ 

Interconnection structure / topology of the network is encoded in  $\mathcal{N}_j,\ j=1,\cdots L$ 





#### **Collecting all equations:**

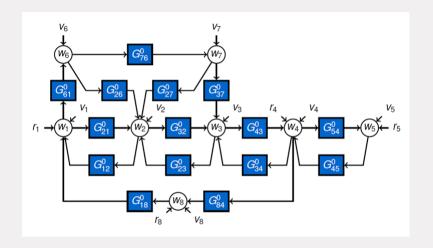
$$\begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_L \end{bmatrix} = \begin{bmatrix} 0 & G_{12}^0 & \cdots & G_{1L}^0 \\ G_{21}^0 & 0 & \cdots & G_{2L}^0 \\ \vdots & \ddots & \ddots & \vdots \\ G_{L1}^0 & G_{L2}^0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_L \end{bmatrix} + R^0 \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_K \end{bmatrix} + H^0 \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_p \end{bmatrix}$$

Network matrix  $G^0(q)$ 

$$w(t)=G^0(q)w(t)+R^0(q)r(t)+v(t); \hspace{0.5cm} v(t)=H^0(q)e(t); \hspace{0.5cm} cov(e)=\Lambda$$

- Typically  ${m R}^{m 0}$  is just a (static) selection matrix, indicating which nodes have an excitation signal.
- The topology of the network is encoded in the structure (non-zero entries) of  $G^0$ .
- r and e are called external signals.



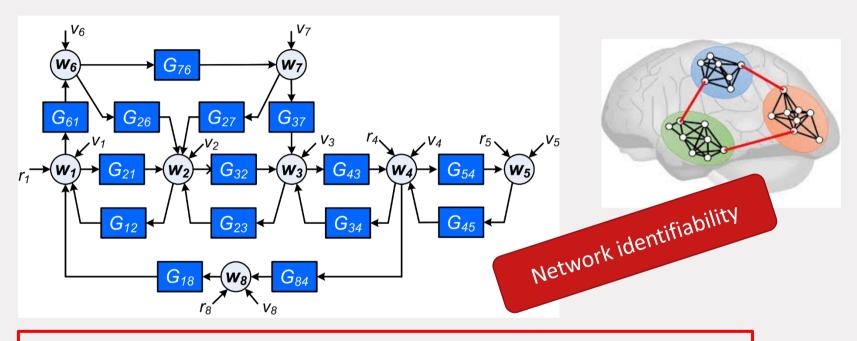


Many challenging data-driven modeling questions can be formulated

Measured time series:

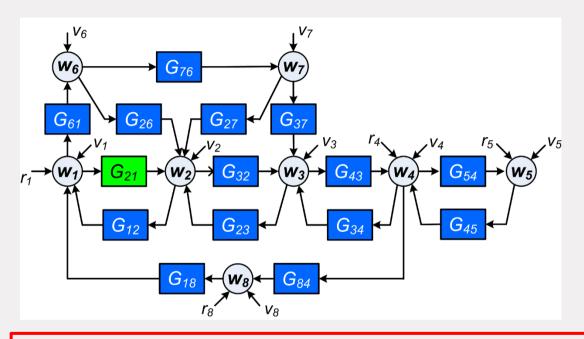
$$\{w_i(t)\}_{i=1,\cdots L}; \ \{r_j(t)\}_{j=1,\cdots K}$$





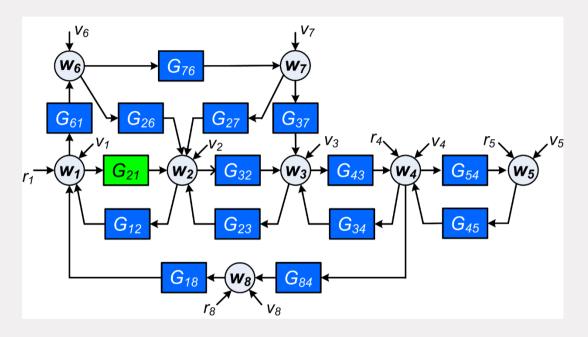
Under which conditions can we estimate the topology and/or dynamics of the full network?





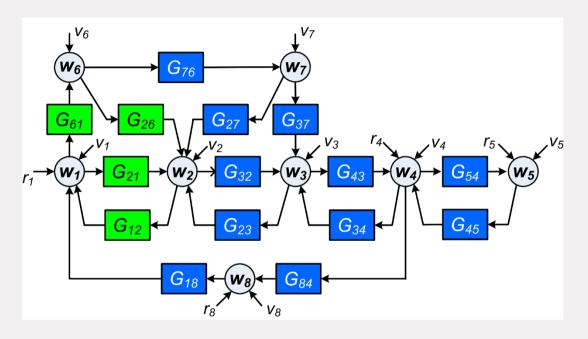
How/when can we learn a local module from data (with known/unkown network topology)? Which signals to measure?





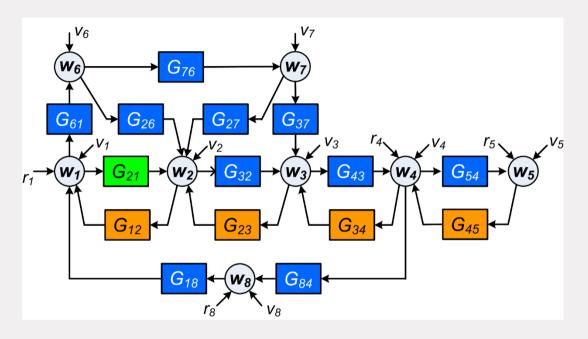
Where to optimally locate sensors and actuators?





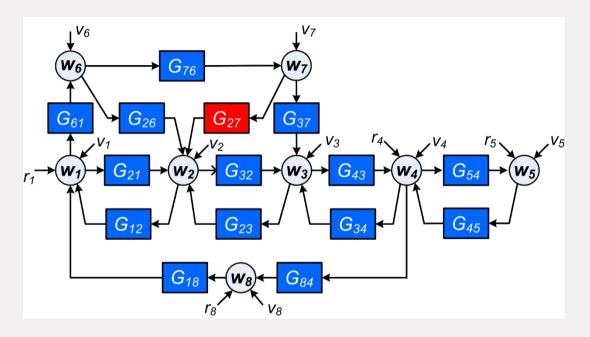
Same questions for a subnetwork





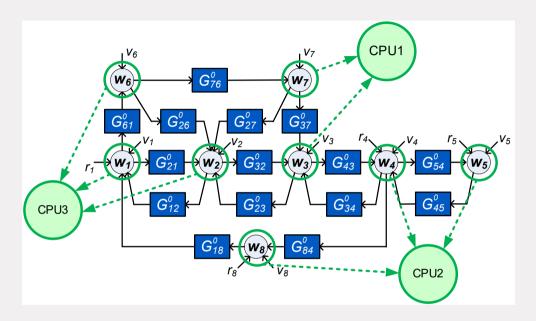
How can we benefit from known modules?





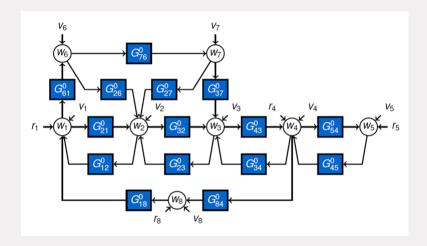
Fault detection and diagnosis; detect/handle nonlinear elements





Can we distribute the computations?





Measured time series:

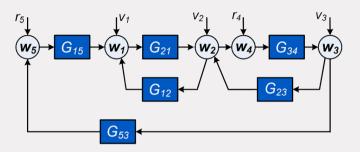
$$\{w_i(t)\}_{i=1,\dots L}; \ \{r_j(t)\}_{j=1,\dots K}$$

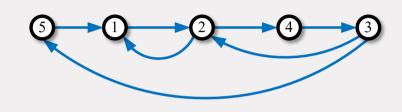
# Many challenging data-driven modeling questions can be formulated

- Identification of a local module (known topology)
- Identification of the full network
- Topology estimation
- Identifiability
- Sensor and excitation allocation
- Fault detection
- User prior knowledge of modules
- Distributed identification
- Scalable algorithms



# Dynamic network setup – directed graph

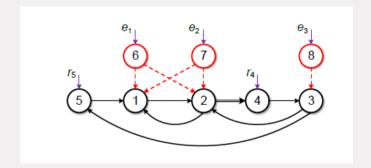




Nodes are vertices; modules/links are edges

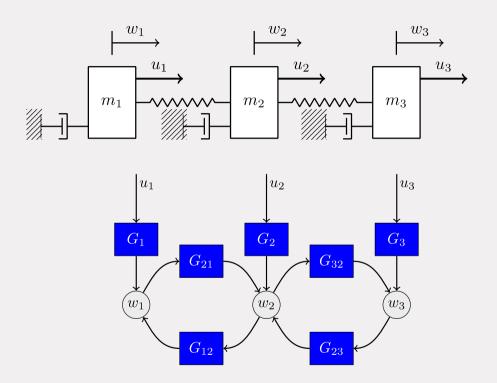
#### Extended graph:

including the external signals and disturbance correlations





### **Application: Networks of (damped) oscillators**



- Power systems, vehicle platoons, thermal building dynamics, ...
- Spatially distributed
- Bilaterally coupled



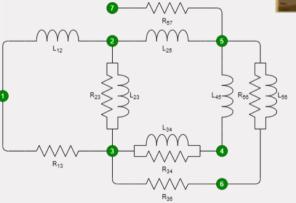
# **Application: Printed Circuit Board (PCB) Testing**

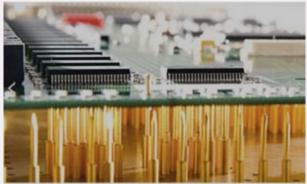


#### **Detection of**

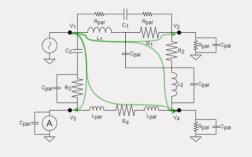
- component failures
- parasitic effects















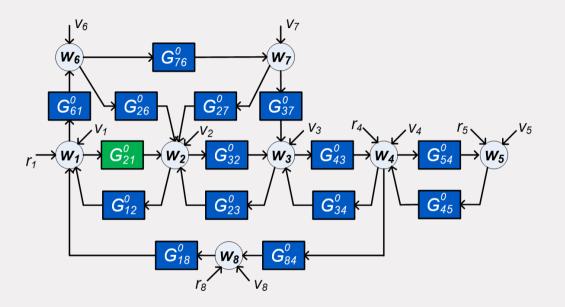
### **Contents**

- Introduction and motivation
- How to model a dynamic network?
- Single module identification
- Global network identification
- Diffusively coupled networks
- Extensions Discussion



# Single module identification

### Single module identification

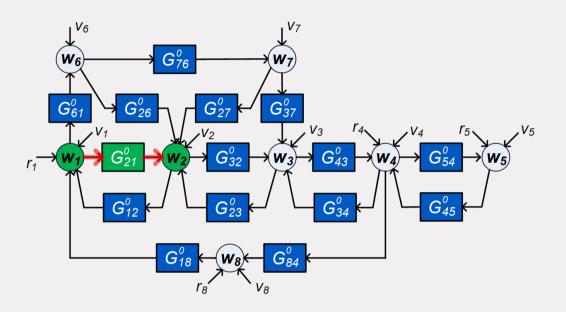


# For a network with known topology:

- Identify  $G_{21}^0$  on the basis of measured signals
- Which signals to measure?
   Preference for local measurements
- When is there enough excitation / data informativity?

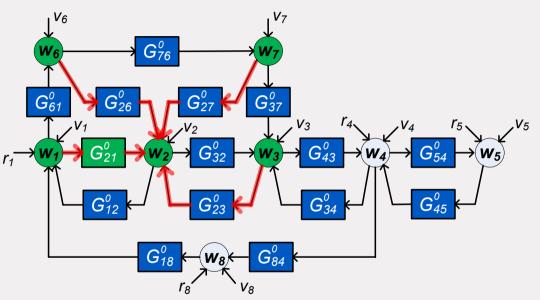


# Single module identification



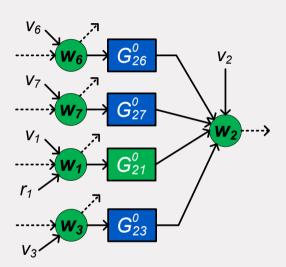
Naïve approach: identify based on  $w_1$  and  $w_2$ : in general does not work.





If noises  $v_k$  are correlated it may even be part of a MIMO problem

Identifiying  $G_{21}^0$  is part of a 4-input, 1-output problem





Identifying  $G_{21}^0$  is part of a 4-input, 1-output problem

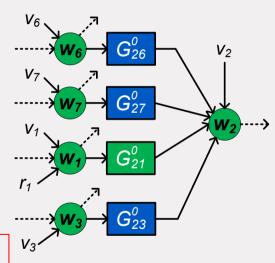
Input signals will be correlated:

similar as in a closed-loop situation

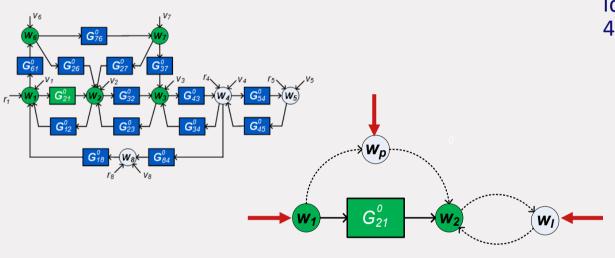
What is required for identifiability / data informativity?

Ability to distinguish between models independent of id-method

Information content of signals dependent on id-method

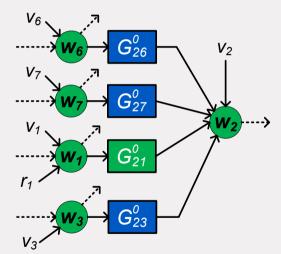






All parallel paths, and loops around the output, plus input  $w_1$  should have an independent external signal r or v and typically need to be blocked by a measured node

Identifying  $G_{21}^0$  is part of a 4-input, 1-output problem

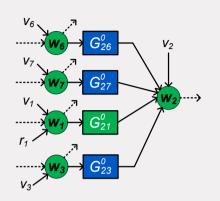




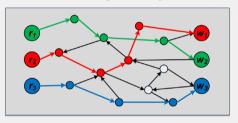
<sup>[1]</sup> Weerts et al., Automatica 2018, CDC 2018

<sup>[2]</sup> Bazanella et al. CDC2017; Hendrickx et al., IEEE-TAC, 2019.

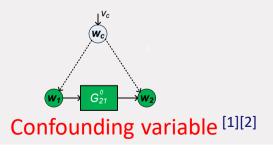
<sup>[3]</sup> Dankers et al., TAC 2016



All inputs require an independent excitation (through vertex disjoint paths) from  $r,\,e$ 



If excitation is relying on disturbances and correlated to  $oldsymbol{v}_2$ 

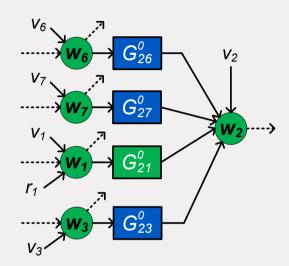


To be handled by:

- Adding more input signals (blocking the cv)
- Including the input as output (MIMO) [3]



#### Typical solution:



- MISO (sometimes MIMO) estimation problem
- to be solved by any (closed-loop) identification algorithm, e.g. direct/indirect method

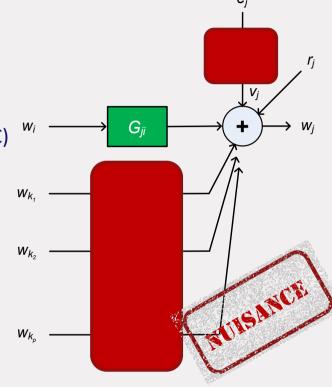


## Machine learning in local module identification

- MISO identification with all modules parameterized
- Brings in two major problems :
  - Large number of parameters to estimate
  - Model order selection step for each module (CV, AIC, BIC)
- For 5 modules, combinations = 244,140,625

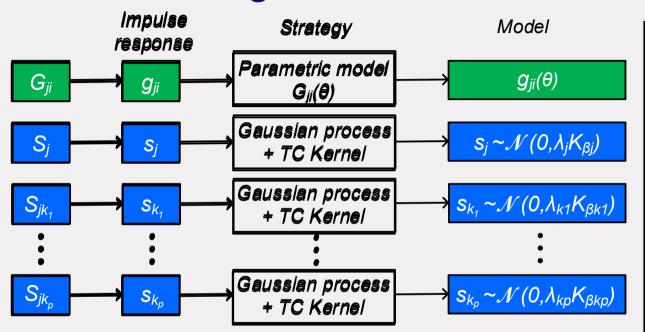


We need only the target module. No NUISANCE!





#### Machine learning in local module identification



- smaller no. of parameters
- simpler model order selection step
- scalable to large dynamic networks
- simpler optimization problems to estimate parameters

Maximize marginal likelihood of output data:  $\hat{\eta} = \underset{n}{\operatorname{argmax}} p(w_j; \eta)$ 

$$\eta \coloneqq \begin{bmatrix} \theta & \lambda_j & \lambda_{k_1} & ... & \lambda_{k_p} & \beta_j & \beta_{k_1}^{\eta} & ... & \beta_{k_p} & \sigma_j^2 \end{bmatrix}^{\mathsf{T}}$$

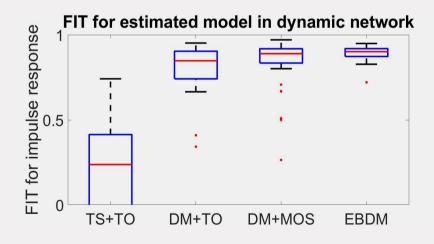


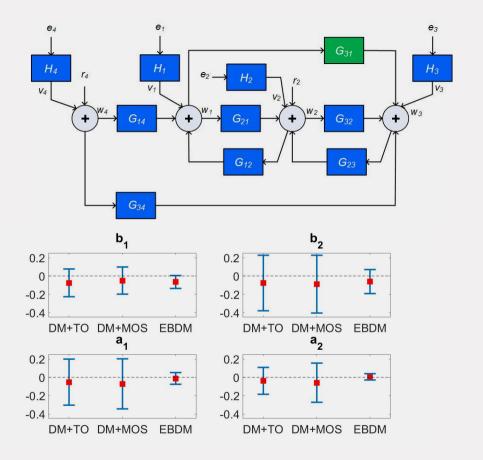
<sup>[1]</sup> Everitt et al., Automatica 2017.

<sup>[2]</sup> K.R. Ramaswamy et al., Automatica, 2021.

#### **Numerical simulation**

- Identify  $G_{31}$  given data
- ▶ 50 independent MC simulation
- ▶ Data = 500







### **Summary single module identification**

- Path-based conditions for network identifiability (where to excite?)
- Graph tools for checking conditions
- Degrees of freedom in selection of measured signals sensor selection
- Methods for consistent and minimum variance module estimation, and effective (scalable) algorithms
- A priori known modules can be accounted for

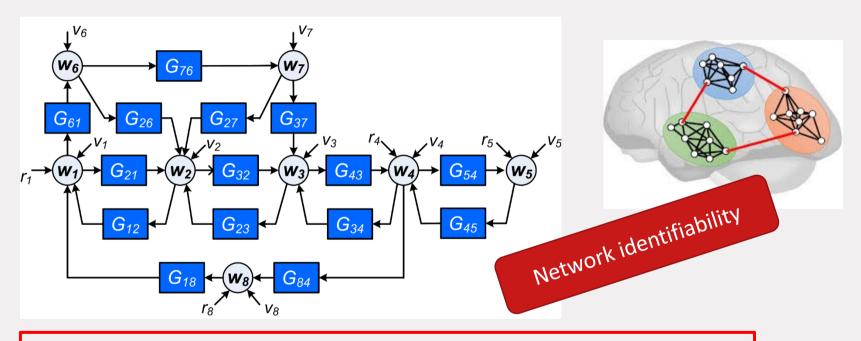




#### **Contents**

- Introduction and motivation
- How to model a dynamic network?
- Single module identification
- Global network identification
- Diffusively coupled networks
- Extensions Discussion

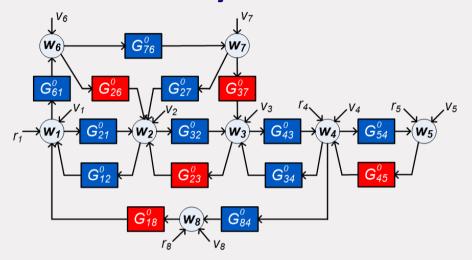
#### **Full network identification**



Under which conditions can we estimate the topology and/or dynamics of the full network?



### **Network identifiability**



blue = unknown red = known

Question: Can different dynamic networks be *distinguished* from each other from measured signals *w*, *r*?



## **Network identifiability**

#### The identifiability problem:

The network **model**:

$$w(t) = G(q)w(t) + R(q)r(t) + \underbrace{H(q)e(t)}_{v(t)}$$

can be transformed with any rational P(q):

$$\begin{split} & P(q)w(t) = P(q)\{G(q)w(t) + R(q)r(t) + H(q)e(t)\} \\ & w(t) = (I - P(q))w(t) + P(q)\{G(q)w(t) + R(q)r(t) + H(q)e(t)\} \end{split}$$

to an **equivalent model**:

$$w(t) = ilde{G}(q)w(t) + ilde{R}(q)r(t) + ilde{H}(q)e(t)$$

Nonuniqueness, unless there are structural constraints on G, R, H.



<sup>[1]</sup> Weerts, Linder et al., Automatica, 2019.

<sup>[2]</sup> Bottegal et al., SYSID 2018

## **Network identifiability**

Consider a **network model set**:

$$\mathcal{M} = \{(G(\theta), R(\theta), H(\theta))\}_{\theta \in \Theta}$$

representing structural constraints on the considered models:

- modules that are fixed and/or zero (topology)
- locations of excitation signals
- disturbance correlation

#### Generic identifiability of ${\mathcal M}$ :

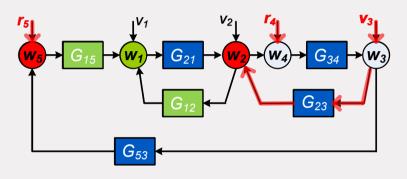
- There do not exist distinct equivalent models (generating the same data)
- for almost all models in the set.



<sup>[1]</sup> Weerts et al., SYSID2015; Weerts et al., Automatica, March 2018;

### **Example 5-node network**

Conditions for identifiability rank conditions on transfer function



Full row rank of

$$\begin{bmatrix} v_3 \\ r_4 \\ r_5 \end{bmatrix} {\longrightarrow} \begin{bmatrix} w_2 \\ w_5 \end{bmatrix}$$

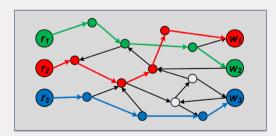
For the **generic case**, the rank can be calculated by a graph-based condition<sup>[1],[2]</sup>:

Generic rank = number of vertex-disjoint paths

2 vertex-disjoint paths → full row rank 2



The rank condition has to be checked for all nodes.



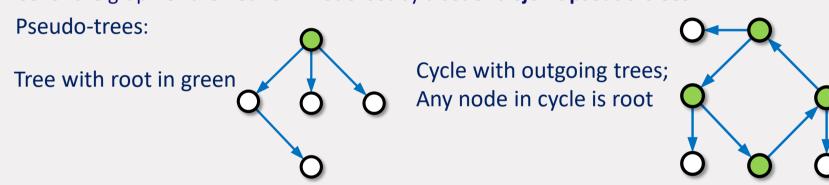
<sup>[1]</sup> Van der Woude, 1991

<sup>[2]</sup> Hendrickx, Gevers & Bazanella, CDC 2017, TAC 2019

## Synthesis solution for network identifiability

Allocating external signals for generic identifiability:

1. Cover the graph of the network model set by a set of disjoint pseudo-trees



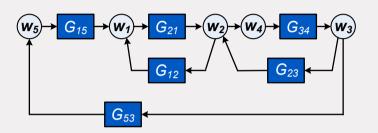
Edges are disjoint and all out-neighbours of a node are in the same pseudo-tree

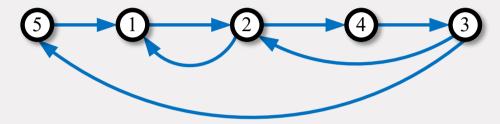
2. Assign an independent external signal (  $m{r}$  or  $m{e}$  ) at a root of each pseudo-tree.

This guarantees generic identifiability of the model set.



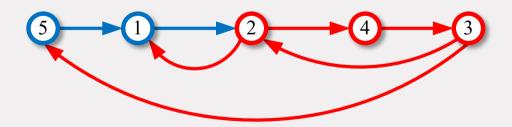
#### Where to allocate external excitations for network identifiability?





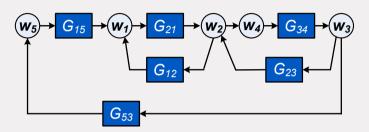
All indicated modules are parametrized

Two disjoint pseudo-trees

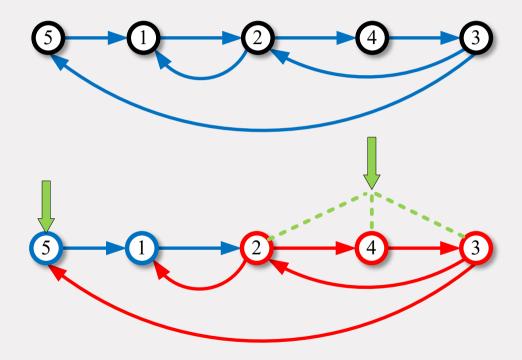




#### Where to allocate external excitations for network identifiability?

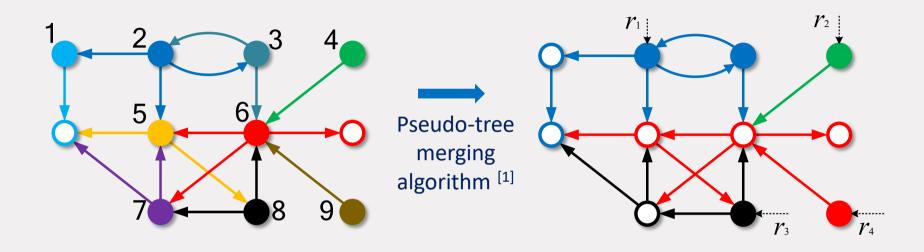


Two independent excitations guarantee generic network identifiability





#### Where to allocate external excitations for network identifiability?



- Nodes are signals w and external signals (r,e) that are input to parametrized link
- Known (nonparametrized) links do not need to be covered



## Summary identifiability of full network

Identifiability of network model sets is determined by

- Presence and location of external signals, and
- Correlation of disturbances
- Topology of parametrized modules
- Graphic-based tool for synthesizing allocation of external signals

#### **Extensions:**

Situations where not all node signals are measured [1]



## Algorithms for identification of full network

(Prediction error) identification methods will typically lead to large-scale **non-convex** optimization problems

**Convex relaxation** algorithms are being developed<sup>[1,2]</sup> as well as machine learning tools

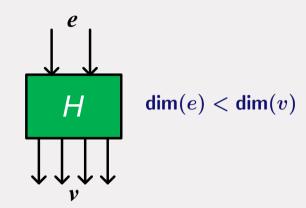


<sup>[1]</sup> Weerts, Galrinho et al., SYSID 2018

## Algorithms for identification of full network

Particular feature for larger networks:

Modeling disturbances as a **reduced rank process**: (cf dynamic factor analysis<sup>[1]</sup>)



#### Consequences for **estimation**<sup>[3,4]</sup>:

- Optimization becomes a constrained quadratic problem with ML properties for Gaussian noise
- Reworked Cramer Rao lower bound
- Some parameters can be estimated variance free → regularization effect

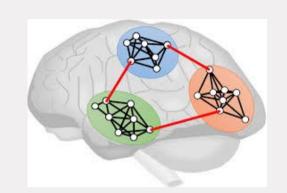


<sup>[1]</sup> Deistler et al., EJC, 2010.

<sup>[2]</sup> Zorzi and Chiuso, Automatica 2017.

### **Topology identification**

- Topology resulting from full dynamic model
- Alternative: non-parametric models (Wiener filters [1])
   or kernel-based approaches [2][3]



- modeling module dynamics by Gaussian processes,
   kernel with 2 parameters for each dynamic module
- Optimizing likelihood of the data as function of parameters and topology:

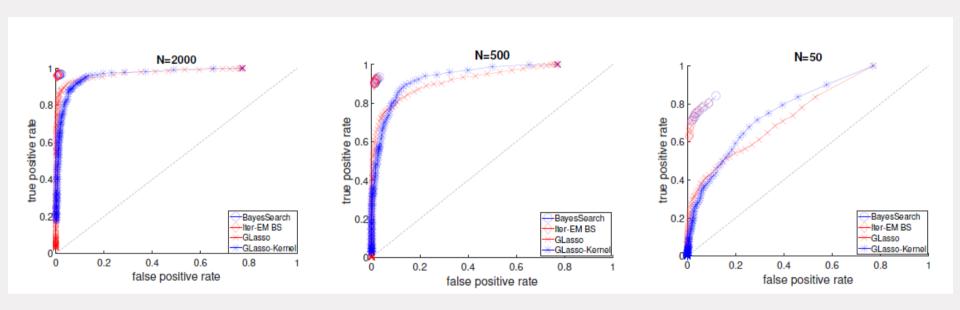
$$p(\{w(t)\}_{t=1}^N | \theta, \mathcal{G})$$

[3] Shi, Bottegal, PVdH, ECC 2019

Forward-backward search over topologies + empirical Bayes (EM) for parameters



### **Topology identification**

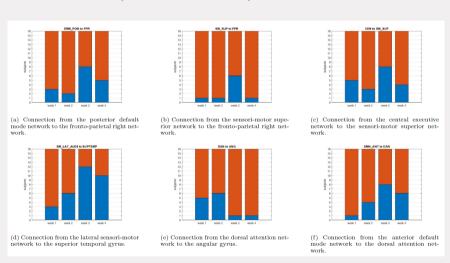


50 MC realizations of network with 6 nodes.



#### **Neurodynamic effect of listening to Mozart music**

Identifying changes in network connections in the brain, after intensely listening for one week (Sonate K448)



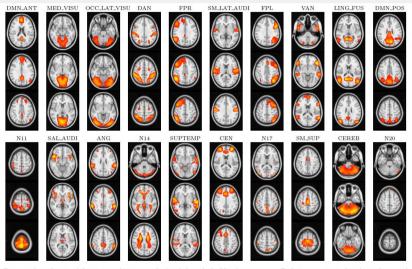


Figure 3: Spatial maps of the 20 active brain networks found through the ICA decomposition. Each image consists of 3 relevant horizontal slices of the brain, where the spatial map is indicated by the red color scale.





#### **Contents**

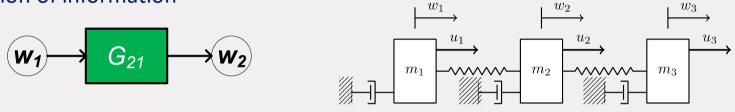
- Introduction and motivation
- How to model a dynamic network?
- Single module identification
- Global network identification
- Diffusively coupled networks
- Extensions Discussion



# Diffusively coupled networks

## Back to the basics of physical interconnections

In connecting physical systems, there is often no predetermined direction of information [1]



**Example**: resistor / spring connection in electrical / mechanical system:

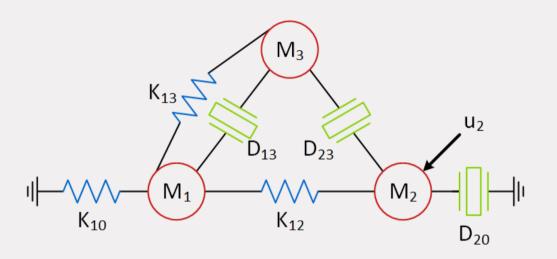
Resistor Spring
$$I = \frac{1}{R}(V_1 - V_2)$$

$$F = K(x_1 - x_2)$$

Difference of node signals drives the interaction: diffusive coupling



### Diffusively coupled physical network



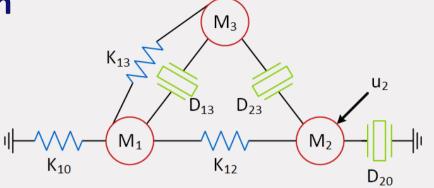
#### Equation for node *j*:

$$M_j \ddot{w}_j(t) + D_{j0} \dot{w}_j(t) + \sum_{k 
eq j} D_{jk} (\dot{m{w}}_j(t) - \dot{m{w}}_k(t)) + K_{j0} w_j(t) + \sum_{k 
eq j} K_{jk} (m{w}_j(t) - m{w}_k(t)) = u_j(t),$$



# Mass-spring-damper system

- Masses  $M_j$
- Springs  $K_{ik}$
- Dampers  $D_{jk}$
- Input  $u_j$



$$\begin{bmatrix} M_1 & & \\ & M_2 & \\ & & M_3 \end{bmatrix} \begin{bmatrix} \ddot{w}_1 \\ \ddot{w}_2 \\ \ddot{w}_3 \end{bmatrix} + \begin{bmatrix} 0 & \\ & D_{20} \\ & & \\ & & \end{bmatrix} \begin{bmatrix} \dot{w}_1 \\ \dot{w}_2 \\ \dot{w}_3 \end{bmatrix} + \begin{bmatrix} K_{10} & \\ & 0 \\ & & \\ & & \\ & & \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} \\ & + \begin{bmatrix} D_{13} & 0 & -D_{13} \\ 0 & D_{23} & -D_{23} \\ -D_{13} & -D_{23} & D_{13} + D_{23} \end{bmatrix} \begin{bmatrix} \dot{w}_1 \\ \dot{w}_2 \\ \dot{w}_3 \end{bmatrix} + \begin{bmatrix} K_{12} + K_{13} & -K_{12} & -K_{13} \\ -K_{12} & K_{12} & 0 \\ -K_{13} & 0 & K_{13} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} 0 \\ u_2 \\ 0 \end{bmatrix}$$

$$\left[ egin{array}{cccc} A(p) &+& B(p) \ diagonal & Laplacian \end{array} 
ight] w(t) = u(t) \qquad A(p), B(p) \;\; {
m polynomial} \qquad p = rac{d}{dt}$$



#### Mass-spring-damper system

$$\left[ egin{array}{cccc} A(p) &+& B(p) \ diagonal & Laplacian \end{array} 
ight] w(t) = u(t) \qquad A(p), B(p) ext{ polynomial}$$

$$[\underbrace{Q(p)}_{diagonal} - \underbrace{P(p)}_{hollow\&symmetric}] \ w(t) = u(t)$$

This fully fits in the earlier module representation:

$$w(t) = Gw(t) + \underbrace{Rr(t) + He(t)}_{Q^{-1}(p)u(t)}$$

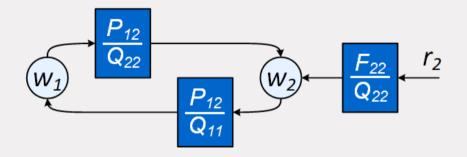
with the additional condition that:

$$G(p) = Q(p)^{-1} P(p)$$
  $Q(p), P(p)$  polynomial  $P(p)$  symmetric,  $Q(p)$  diagonal



# **Module representation**

Consequences for node interactions:



- Node interactions come in pairs of modules
- Where numerators are the same

Framework for network identification remains the same

Symmetry can simply be incorporated in identification



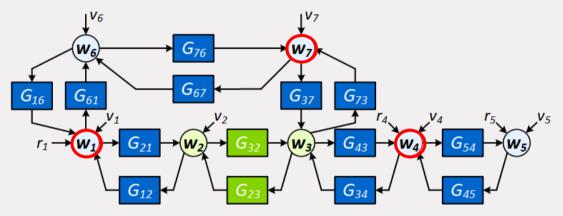
#### Local network identification

Identification of **one** (physical) interconnection Identification of **two** modules  $G_{jk}$  and  $G_{kj}$ G<sub>37</sub> G<sub>73</sub>  $G_{61}$ 



#### **Immersion conditions**

For simultaneously identifying two modules in one interconnection:



The parallel path and loops-around-the-output condition, now simplifies to:

Measuring/exciting all neighbouring nodes of  $w_2$  and  $w_3$  leads to a solution



#### **Summary diffusively coupled networks**

- Diffusively coupled networks fit within the module framework (special case)
  - no restriction to second order equations
- Earlier identification framework can be utilized
- Local identification is well-addressed (and stays really local)
- Framework is fit for representing **cyber-physical systems** (combining physical bi-directional links, and cyber uni-directional links).





### **Extensions - Discussion**

#### **Extensions - Discussion**

- Including sensor noise [1]
  - Errors-in-variabels problems can be more easily handled in a network setting
- Distributed estimation (MISO models) [2]
  - Communication constraints between different agents
  - Recursive (distributed) estimator converges to global optimizer (more slowly)

- Experiment design [3],[4]
  - design of least costly experiments



[3] Gevers and Bazanella, CDC 2015. [4] Morelli, Bombois et al., ECC 2019;

[2] Steentjes et al., IFAC-NECSYS, 2018.

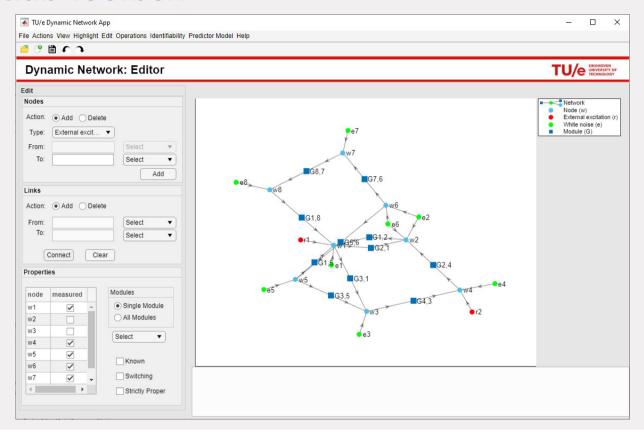


#### **Summary**

- Dynamic network modeling:
  - intriguing research topic with many open questions
- The (centralized) LTI framework is only just the beginning
- Further move towards data-aspects related to distributed control
- and large-scale aspects
- and more real-life applications (diagnostics, fault detection)



#### **Matlab Toolbox**





#### **ERC SYSDYNET Team: data-driven modeling in dynamic networks**

#### Research team:



SYSTEM ID FNTIFICATI MIC NFTW ORKS DANKERS















**Arne Dankers** 

**Harm Weerts** 

**Shengling Shi** 

Karthik Ramaswamy

Giulio Bottegal Xiaodong Cheng

















**Mannes Dreef** 

Lizan Kivits

Tom Steentjes Stefanie Fonken

Mircea Lazar

Tijs Donkers

Jobert Ludlage

#### Co-authors, contributors and discussion partners:

Donatello Materassi, Manfred Deistler, Michel Gevers, Jonas Linder, Sean Warnick, Alessandro Chiuso, Håkan Hjalmarsson, Miguel Galrinho, Martin Enqvist, Johan Schoukens, Xavier Bombois, Peter Heuberger, Péter Csurcsia Minneapolis, Vienna, Louvain-la-Neuve, Linkoping, KTH Stockholm, Padova, Brussels, Salt Lake City, Lyon.





### **Further reading**

- P.M.J. Van den Hof, A. Dankers, P. Heuberger and X. Bombois (2013).
   Identification of dynamic models in complex networks with prediction error methods basic methods for consistent module estimates. *Automatica*, Vol. 49, no. 10, pp. 2994-3006.
- A. Dankers, P.M.J. Van den Hof, X. Bombois and P.S.C. Heuberger (2015).
   Errors-in-variables identification in dynamic networks consistency results for an instrumental variable approach. *Automatica*, Vol. 62, pp. 39-50, 2015.
- A. Dankers, P.M.J. Van den Hof, P.S.C. Heuberger and X. Bombois (2016). Identification of dynamic models in complex networks with predictior error methods - predictor input selection. *IEEE Trans. Autom. Contr.*, 61 (4), pp. 937-952, 2016.
- H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2018). Identifiability
  of linear dynamic networks. Automatica, 89, pp. 247-258, March 2018.
- H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2018). Prediction error identification of linear dynamic networks with rank-reduced noise. Automatica, 98, pp. 256-268, December 2018.
- H.H.M. Weerts, J. Linder, M. Enqvist and P.M.J. Van den Hof (2019).
   Abstractions of linear dynamic networks for input selection in local module identification. Automatica, Vol. 117, July 2020.
- R.J.C. van Esch, S. Shi, A. Bernas, S. Zinger, A.P. Aldenkamp and P.M.J. Van den Hof (2020). A Bayesian method for inference of effective connectivity in brain networks for detecting the Mozart effect. *Computers in Biology and Medicine*, Vol. 127, paper 104055, December 2020.

- K.R. Ramaswamy, G. Bottegal and P.M.J. Van den Hof (2020). Learning linear models in a dynamic network using regularized kernel-based methods. *Automatica*, Vol. 129, Article 109591, July 2021.
- P.M.J. Van den Hof and K.R. Ramasmwamy (2021). Learning local modules in dynamic networks. Proc. of Machine Learning Res., Vol. 144, pp. 176-188.
- K.R. Ramaswamy and P.M.J. Van den Hof (2021). A local direct method for module identification in dynamic networks with correlated noise. *IEEE Trans. Automatic Control*, Vol. 66, no. 11, pp. 3237-3252, November 2021.
- X. Cheng, S. Shi and P.M.J. Van den Hof (2022). Allocation of excitation signals for generic identifiability of linear dynamic networks. To appear in *IEEE Trans. Automatic Control*, Vol. 67, no. 2, pp. 692-705, February 2022.
- S. Shi, X. Cheng and P.M.J. Van den Hof (2022). Generic identifiability of subnetworks in a linear dynamic network: the full measurement case. *Automatica*, Vol. 117 (110093), March 2022.
- S.J.M. Fonken, K.R. Ramaswamy and P.M.J. Van den Hof (2022). A scalable multi-step least squares method for network identification with unknown disturbance topology. To appear in *Automatica*, July 2022.
- K.R. Ramaswamy, P.Z. Csurcsia, J. Schoukens and P.M.J. Van den Hof (2022). A frequency domain approach for local module identification in dynamic networks. To appear in *Automatica*, October 2022.
- S. Shi, X. Cheng and P.M.J. Van den Hof (2023). Single module identifiability in linear dynamic networks with partial excitation and measurement. To appear in *IEEE Trans. Automatic Control*, January 2023.





# The end