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Introduction

Overall trend:

e (Large-scale) interconnected dynamic systems

* Distributed / multi-agent type monitoring, control and optimization
problems

* Data is “everywhere”, big data era, Al/machine learning tools
* Model-based operations require accurate/relevant models
* - Learning models from data (including physical insights when available)

TU/e



Introduction

Drivers for data-processing / data-analytics:

Providing the tools for online
* Model estimation / calibration / adaptation

to accurately perform online model-based X:

* Monitoring

e Diagnosis and fault detection
e Control and optimization

* Predictive maintenance
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Introduction

Distributed / multi-agent control:

With both physical and communication links between
systems G; and controllers C;

How to address data-driven modelling problems in such a setting?

TU/e



Introduction

The classical (multivariable) data-driven modeling problems[l]

open loop closed loop 14
v
— G —

Identify a model of G on the basis of measured signals u, y
(and possibly 7), focusing on continuous LT/ dynamics.

In interconnected systems (networks) the structure / topology becomes
important to include

Wjung (1999), Séderstréom and Stoica (1989), Pintelon and Schoukens (2012) TU/e
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Network models
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Network models

o x(k+1) = Ax(k)+ Bu(k)
a,, Q21 X1
o)y G |\ (o e States as nodes in a (directed graph)
Jde2 as
. a"z as1\ | as\ 777 e State transitions (1 step in time) reflected by a;;
X3 ) 037 X7 )2yl
) 0334 a, e e Transitions are encoded in links
<ZEAN = o Effect of transitions are summed in the nodes
Oy X5 Q65
bss Css e Self loops are allowed
Us ys

e Actuation (u) and sensing (y) reflected by separate links
State space representation

TU/e



Network models

o x(k+1) = Ax(k)+ Bu(k)
a,, Q21 X1
Xz a1 Jdi16 Xs ' )
e | \as e Ultimate break-down of structure in the system
az3 a, s, g 78 a77
X3 )€ 237 x> (v7)| e to smallest possible level of detail
3
043\ \034 \ 97 076
2/ae\ ] L For data-driven modeling problems:
Oy X5 Q65
bss Css e Stronger role for measurable inputs and outputs
Us ys

¢ i/o dynamics can be lumped in dynamic modules
State space representation
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Network models

U
bi;
a,, Q21 X r1 Usg U5
G, | \J16 ) we w: w4 ws
X5 Xg wy oo 2 oo 3 4 Qo 5
O3 Jdsr dg s 21 32 > 54
aaz 051 dsgy a7z
037
X3 )¢ - X722
y GgS < Gga ——
as3\ U3z \ 9z Q76
Xy (P 1 Xg G?"j <
O44 x5 )~ 965
bss Css
us) (¥s Module representation [?!

State space representation [

[1] Goncalves, Warnick, Sandberg, Yeung, Yuan, Scherpen,... TU/e
[2] VdH, Dankers, Goncalves, Warnick, Gevers, Bazanella, Hendrickx, Materassi, Weerts,...
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Dynamic network models - zooming

Increasing level of
detail

Decreasing structural
information

TU/e
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Dynamic network setup

Ve V7 - module

external excitation
process noise
node signal

TU/e
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Dynamic network setup

Ve V7 - module

external excitation
process noise
node signal
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Dynamic network setup

Ve V7 - module

external excitation
v,- process noise
node signal
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Dynamic network setup

Ve V7 - module

external excitation
Process noise
node signal

TU/e
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Dynamic network setup

- module

external excitation
process noise
node signal

TU/e
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Dynamic network setup

Basic building block:

wi(t) = Y Gh(@)wi(t) + i (t) + v;(¢)
keN;
w;: node signal
r; : external excitation signal
v; : (unmeasured) disturbance, stationary stochastic process
GY,.: module, rational proper transfer function, N; C {Z N [1, L]\{j}}

q: shift operator, g~ 'w(t) = w(t — 1)

Node signals: wq, - wp,
Interconnection structure / topology of the network is encoded in Aj, 7 = 1,--- L

J. Gongalves and S. Warnick, IEEE TAC, 2008.
PVdH et al., Automatica, 2013.

TU/e
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Dynamic network setup

Collecting all equations:

0 0
wi 0 Gig - ngL wi 1 el
w2 — G21 0 ) G2L w2 —I-RO T2 —I-HO €9
wy, GLI GL2 co 0 wr, TK €p
p - —~ -

Network matrix G°(q)

w(t) = G(q)w(t) + R%(q)r(t) +v(t);  w(t) = HO(q)e(t); cov(e) = A

e Typically RV is just a (static) selection matrix, indicating which nodes have an excitation signal.

e The topology of the network is encoded in the structure (non-zero entries) of G°.

e 7 and e are called external signals.

J. Gongalves and S. Warnick, IEEE TAC, 2008. TU
PVdH et al., Automatica, 2013. e



Dynamic network setup

Many challenging data-driven modeling
guestions can be formulated

Measured time series:
{wi(t) }i=1,...0; {rj(®)}j=1,..K

TU/e

24



25

Model learning problems

Under which conditions can we estimate the topology and/or
dynamics of the full network?

TU/e
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Model learning problems

How/when can we learn a local module from data
(with known/unkown network topology) ? Which signals to measure?

TU/e



27

Model learning problems

Where to optimally locate sensors and actuators?

TU/e
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Model learning problems

Same questions for a subnetwork

TU/e
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Model learning problems

How can we benefit from known modules?

TU/e
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Model learning problems

Fault detection and diagnosis; detect/handle nonlinear elements

TU/e
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Model learning problems

Can we distribute the computations?

TU/e



Dynamic network setup

Many challenging data-driven modeling
guestions can be formulated

Measured time series:
{wi(t) }i=1,...0; {rj(®)}j=1,..K

e Scalable algorithms

TU/e
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Dynamic network setup — directed graph

Nodes are vertices; modules/links are edges

Extended graph: s Cé*;,:jd.o
(2)

including the external signals
and disturbance correlations

TU/e
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Application: Networks of (damped) oscillators

5

| w1 | (105} | W3
U1 U9 us
mq 7 :I_ mo % :I_ ms

Power systems, vehicle platoons,
thermal building dynamics, ...

Spatially distributed

Bilaterally coupled

TU/e



Application: Printed Circuit Board (PCB) Testing

Detection of

* component failures

* parasitic effects

35
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Single module identification

For a network with known
topology:

* |dentify G9, on the basis of
measured signals

* Which signals to measure?
Preference for local
measurements

* When is there enough
excitation / data informativity?

TU/e
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Single module identification

Naive approach: identify based onw; and ws : in general does not work.

TU/e
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Single module identification

If noises v, are correlated
it may even be part of a
MIMO problem

Identifiying GY, is part of a
4-input, 1-output problem

TU/e



Single module identification

Identifiying GY, is part of a
4-input, 1-output problem

Input signals will be correlated:
similar as in a closed-loop situation

What is required for
identifiability / data informativity?

/

Ability to distinguish between models |[Information content of signals
independent of id-method dependent on id-method

TU/e

42



43

Single module identification

All parallel paths, and loops around the output, plus input w1
should have an independent external signal r or v

and typically need to be blocked by a measured node

[1] Weerts et al., Automatica 2018, CDC 2018 [3] Dankers et al., TAC 2016
[2] Bazanella et al. CDC2017; Hendrickx et al., IEEE-TAC, 2019. [4] Shi et al., Automatica 2022

Identifiying GY, is part of a
4-input, 1-output problem

TU/e
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Single module identification

Ve A

_______ | All inputs require an independent excitation
(through vertex disjoint paths) fromr, e

V3

If excitation is relying on disturbances
and correlated to v9

@g To be handled by:
» Adding more input signals (blocking the cv)
* Including the input as output (MIMO) [3]

Confounding variable [112]

[1] J. Pearl, Stat. Surveys, 3, 96-146, 2009 [3] K.R.Ramaswamy et al., IEEE-TAC, Nov 2021 TU
[2] A.G. Dankers et al., Proc. IFAC World Congress, 2017. e
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Single module identification

Typical solution:

* MISO (sometimes MIMO) estimation problem
* to be solved by any (closed-loop) identification algorithm, e.g. direct/indirect method

TU/e



Machine learning in local module identification .

* MISO identification with all modules parameterized

e Brings in two major problems :
» Large number of parameters to estimate
» Model order selection step for each module (CV, AIC, BIC) ™ n—_)

(] ) Wk,

* For 5 modules, combinations = 244,140,625 °

sz
Increases variance
Computationally challenging

Wkp

 We need only the target module. No NUISANCE!
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Machine learning in local module identification

Impuise Strategy
response

Model

W Parametric model
6,(6)

H_J Gausslan process
+ TC Kernel

W Gausslan process
+ TC Kernel
’

Gauss/an process
+ TC Kernel

Skp ~N (O’AKPKBkP)

Maximize marginal likelihood of output data: 7) = argmax p(wj; n)
n

T] o [9 /1] /1](1 Akp ﬁ]

[1] Everitt et al., Automatica 2017.
[2] K.R. Ramaswamy et al., Automatica, 2021.

ﬁkl ﬁkp

* smaller no. of
parameters

* simpler model order
selection step

* scalable to large
dynamic networks

* simpler optimization
problems to estimate
parameters

TU/e




Numerical simulation

» Identify G341 given data

» 50 independent MC simulation
Data = 500

>

FIT for impulse response
o
(@]

1FIT for estimated model in dynamic network
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Summary single module identification

e Path-based conditions for network identifiability (where to excite?)

e Graph tools for checking conditions

* Degrees of freedom in selection of measured signals — sensor selection

* Methods for consistent and minimum variance module estimation, and
effective (scalable) algorithms

e A priori known modules can be accounted for

TU/e
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Full network identification

Under which conditions can we estimate the topology and/or
dynamics of the full network?

TU/e
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Network identifiability

6 %4

blue = unknown
red =known

Question: Can different dynamic networks be distinguished from each other from
measured signals w, r?

TU/e
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Network identifiability

The identifiability problem:

The network model:
w(t) = G(q)w(t) + R(q)r(t) + H(q)e(t)
v(t)

can be transformed with any rational P(q) :
P(q)w(t) = P(q){G(q)w(t)+R(q)r(t)+H(q)e(t)}
w(t) = (I-P(q))w(t)+P(q){G(q)w(t)+R(q)r(t)+H(q)e(t)}
to an equivalent model:
w(t) = G(q)w(t) + R(q)r(t) + H(q)e(t)

=) NONuniqueness, unless there are structural constraints on G, R, H.

[1] Weerts, Linder et al., Automatica, 2019.
[2] Bottegal et al., SYSID 2018

TU/e
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Network identifiability

Consider a network model set:
M = {(G(6), R(6), H(0))}oco

representing structural constraints on the considered models:

* modules that are fixed and/or zero (topology)
* locations of excitation signals
e disturbance correlation

Generic identifiability of M :

- There do not exist distinct equivalent models (generating the same data)
- for almost all models in the set.

[1] Weerts et al., SYSID2015; Weerts et al., Automatica, March 2018;
[2] Bazanella, CDC2017; Hendrickx et al., IEEE-TAC, 2019.

TU/e
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Example 5-node network

Conditions for identifiability m==) rank conditions on transfer function
rs Vs vo, T4 Vs Full row rank of

=[]

Trs

Gex y

For the generic case, the rank can be calculated by a graph-based condition*}[2];

Generic rank = number of vertex-disjoint paths

2 vertex-disjoint paths - full row rank 2 @

The rank condition has to be checked for all nodes.

[1] Van der Woude, 1991
[2] Hendrickx, Gevers & Bazanella, CDC 2017, TAC 2019

TU/e



58

Synthesis solution for network identifiability

Allocating external signals for generic identifiability:

1. Cover the graph of the network model set by a set of disjoint pseudo-trees
Pseudo-trees:

Tree with root in green Cycle with outgoing trees;
Any node in cycle is root

Edges are disjoint and all out-neighbours of a node are in the same pseudo-tree

2. Assign an independent external signal ( 7 or e) at a root of each pseudo-tree.

This guarantees generic identifiability of the model set.

[1] X. Cheng, S. Shi and PVdH, TAC, February 2022. TU/e



Where to allocate external excitations for network identifiability?

All indicated modules are parametrized

Two disjoint pseudo-trees

TU/e
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Where to allocate external excitations for network identifiability?

Two independent excitations
guarantee
generic network identifiability

60
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Where to allocate external excitations for network identifiability?

I 7’25

—)

Pseudo-tree
merging
algorithm [

* Nodes are signals w and external signals (7, e) that are input to parametrized link

* Known (nonparametrized) links do not need to be covered

[1] X. Cheng, S. Shi and PVdH, TAC, February 2022. TU/e



Summary identifiability of full network

Identifiability of network model sets is determined by

* Presence and location of external signals, and
e Correlation of disturbances
* Topology of parametrized modules

e Graphic-based tool for synthesizing allocation of external signals

Extensions:
 Situations where not all node signals are measured !

[1] Bazanella, CDC 2019.
62
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Algorithms for identification of full network

(Prediction error) identification methods will typically lead to large-scale
non-convex optimization problems

Convex relaxation algorithms are being developed(*?! as well as machine
learning tools

[1] Weerts, Galrinho et al., SYSID 2018
[2] Fonken et al., Automatica, July 2022.

TU/e
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Algorithms for identification of full network

e

Particular feature for larger networks:

Modeling disturbances as a reduced rank process:
(cf dynamic factor analysis(!)

dim(e) < dim(v)

Consequences for estimation34:; b

* Optimization becomes a constrained quadratic problem
with ML properties for Gaussian noise
e Reworked Cramer Rao lower bound
* Some parameters can be estimated variance free = regularization effect

[1] Deistler et al., EJC, 2010. [3] Weerts et al., Automatica, dec 2018. TU/e
[2] Zorzi and Chiuso, Automatica 2017. [4] Fonken et al., Automatica, July 2022.



65

Topology identification

* Topology resulting from full dynamic model

Alternative: non-parametric models (Wiener filters [11)
or kernel-based approaches (23]

modeling module dynamics by Gaussian processes,

kernel with 2 parameters for each dynamic module

Optimizing likelihood of the data as function of parameters and topology:

p({w(t)};1,16,6)

Forward-backward search over topologies + empirical Bayes (EM) for parameters

[1] Materassi & Innocenti, TAC 2010. [3] Shi, Bottegal, PVdH, ECC 2019 TU
[2] Chiuso & Pillonetto, Automatica, 2012. e
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true posditive rate

Topology identification

N=2000
—BayasSearch
~—lior-EM BS
—GLasso
L . \ ——GLasso-Kamel
0.2 0.4 0.6 08 1

false positive rate

true positive rate

N=500
-—BayasSearch
—flir-EM BS
—GlLasso
) ) ) —GLasso-Karnel
0.2 0.4 0.6 0.8 1

false positive rate

50 MC realizations of network with 6 nodes.

[1] Shi, Bottegal, PVdH, ECC 2019

true positive rate

S = S
. @ o
. —

=
[

false positive rate

N=50
/.
—BayasSoarch
—har-EM BS
—(GLasso
) ) ) —GLasso-Kamel
0.2 0.4 0.6 0.8 1
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Neurodynamic effect of listening to Mozart music

DMN_ANT MED_VISU OCC_LATVISU DAN FPR SM_LAT_AUDI FPL VAN LING_FUS DMN_POS

Identifying changes in network connections
in the brain, after intensely listening for
one week (Sonate K448)

(a) Connection from the posterior default
mode network to the fronto-parietal right net-
work.

Figure 3: Spatial maps of the 20 active brain networks found through the ICA decomposition. Each image consists of 3 relevant horizontal
slices of the brain, where the spatial map is indicated by the red color scale.

[
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[

\

(d) Connection from the lateral
network to the superior temporal gyrus.

[1] R. van Esch, S. Shi, A. Bernas, S. Zinger, A. Aldenkamp, PVdH, Computers in Biology and Medicine, Vol. 127, December 2020 TU/e
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Back to the basics of physical interconnections

In connecting physical systems, there is often no predetermined

direction of information [1!

—

wi—eE—w, N st

IRl &n

w9 ws
(5 us
m2 —’V/VVWV‘— m3
in

Example: resistor / spring connection in electrical / mechanical system:

*\\\®

Resistor Spring

F =K(x; —x;)

1
I=§(V1_V2)

Difference of node signals drives the interaction: diffusive coupling

[1] J.C. Willems (1997,2010)

TU/e
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Diffusively coupled physical network

Equation for node j:

M;a;(t)+Djot; (t)+ Y Dijn(tb; (t) — bk (t))+Kjow; (t)+ Y Kji(w;(t) — we(t)) = u;(t),
k#j k#j

TU/e
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Mass-spring-damper system

* Masses Mj
* Springs Kjy

* Dampers Dj

* Inputuy;
M, Wy Wy Kio
M2 WZ + Wz + 0
Ml [ W 0

[ A(p) + B(p) | w(t) =u(l)
—— ——

diagonal Laplacian

w11
w2
W3]
Wy Kip + K13 —Ki2 —Ki3][W1 0
Wwal+| —Kiz K12 0 Wzl = [uzl
LE —Ki3 0 K3 11lws 0
i d
A(p), B(p) polynomial p=—
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Mass-spring-damper system

[ A(p) + B(p) |w(®) =ul)  A(p),B(p) polynomial
——’ ——

diagonal Laplacian

[ Q(p) — P(p) J w(t) = u(t)
—— ~——
diagonal hollow&symmetric
This fully fits in the earlier module representation:
w(t) = Gw(t) + Rr(t) + He(t)
Q-1 (p)u(t)

with the additional condition that:

G(p) =Q(p)"'P(p)  Q(p),P(p) polynomial
P(p) symmetric, Q(p) diagonal

TU/e
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Module representation

Consequences for node interactions:

P12

@Q_zz

* Node interactions come in pairs of modules
* Where numerators are the same

Framework for network identification remains the same

* Symmetry can simply be incorporated in identification

TU/e
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Local network identification

Identification of one (physical) interconnection

Identification of two modules G and Gy

TU/e
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Immersion conditions

For simultaneously identifying two modules in one interconnection:

The parallel path and loops-around-the-output condition, now
simplifies to:

Measuring/exciting all neighbouring nodes of w2 and ws leads to a solution

E.E.M. Kivits et al., CDC 2019.

TU/e



77

Summary diffusively coupled networks

» Diffusively coupled networks fit within the module framework (special case)
- no restriction to second order equations

* Earlier identification framework can be utilized

* Local identification is well-addressed (and stays really local)

* Framework is fit for representing cyber-physical systems
(combining physical bi-directional links, and cyber uni-directional links).

TU/e
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Extensions - Discussion

* Including sensor noise [

e Errors-in-variabels problems can be more easily handled in a network
setting

* Distributed estimation (MISO models) (2]

* Communication constraints between different agents
* Recursive (distributed) estimator converges to global optimizer (more slowly)

* Experiment design (34
* design of least costly experiments

[1] Dankers et al., Automatica, 2015. [3] Gevers and Bazanella, CDC 2015.
[2] Steentjes et al., IFAC-NECSYS, 2018. [4] Morelli, Bombois et al., ECC 2019;

TU/e
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Summary

* Dynamic network modeling:
intriguing research topic with many open questions
* The (centralized) LTI framework is only just the beginning
e Further move towards data-aspects related to distributed control
e and large-scale aspects

* and more real-life applications (diagnostics, fault detection)

TU/e



81

Matlab Toolbox

[4] TU/e Dynamic Netwerk App

File Actions View Highlight Edit Operations Identifiability Predictor Modsl

= B8 - alle ¥

Dynamic Network: Editor

EINDHOVEN
I UNIVERSITY OF
TECHHOLOGY

Edit
Nodes

Action: () Delete

Type: |External excit.. v |

From Sele v
o | | [select v |
| Add |
Links
Action: () Add () Delete
From: | Select v |
T [Select v
| Connect| | Clear |
Properties
node |measured |  Modules
wi - | #) Single Module
w2 O () All Modules
w3
| Select
wé
w5
5 [] Known
w7 = [ Switching
L L2 [ strictly Proper

w—a=—5 Network

MNode {w)

External excitation (r)
‘White noise (e)

Eeen

Module (G)

TU/e
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Further reading

e P.M.J.Van den Hof, A. Dankers, P. Heuberger and X. Bombois (2013).
Identification of dynamic models in complex networks with prediction error
methods - basic methods for consistent module estimates. Automatica, Vol.
49, no. 10, pp. 2994-3006.

* A. Dankers, P.M.J. Van den Hof, X. Bombois and P.S.C. Heuberger (2015).
Errors-in-variables identification in dynamic networks - consistency results

for an instrumental variable approach. Automatica, Vol. 62, pp. 39-50, 2015.

* A. Dankers, P.M.J. Van den Hof, P.S.C. Heuberger and X. Bombois (2016).
Identification of dynamic models in complex networks with predictior error
methods - predictorinput selection. IEEE Trans. Autom. Contr., 61 (4), pp.
937-952, 2016.

*  H.H.M.Weerts, P.M.J. Van den Hof and A.G. Dankers (2018). Identifiability
of linear dynamic networks. Automatica, 89, pp. 247-258, March 2018.

*  H.H.M.Weerts, P.M.J. Van den Hof and A.G. Dankers (2018). Prediction
error identification of linear dynamic networks with rank-reduced noise.
Automatica, 98, pp. 256-268, December 2018.

*  H.H.M.Weerts, J. Linder, M. Engvist and P.M.J. Van den Hof (2019).
Abstractions of linear dynamic networks for input selectionin local module
identification. Automatica, Vol. 117, July 2020.

+  R.J.C.van Esch, S. Shi, A. Bernas, S. Zinger, A.P. Aldenkamp and P.M.J.
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