System Identification in Dynamic Networks

Paul M.J. Van den Hof

Arne Dankers, Peter Heuberger, Xavier Bombois

21st International Symposium on Mathematical Theory of Networks and Systems (MTNS’14), 7-11- July 2014, Groningen, The Netherlands
Introduction

Dynamic networks:

- Distributed Control
- Power Systems
- Biological Systems
- Financial Systems

Sources:
- Simonetto 2012
- Pierre et al. 2012
- Hillen 2012
- Materassi et al. 2010
Introduction

The classical identification problems:

Identify a plant model \hat{G} on the basis of measured signals u, y (and possibly r)

- Several classical methods available (PE, subspace, nonparam,..)
- Well known results for identification in known structure (open loop, closed-loop, possibly known controller)
Introduction

Dynamical systems in emerging fields have a more complex structure:

- distributed control system
- dynamic network

(distributed systems, multi-agent systems, biological networks, smart grids,.....)

Questions to be addressed:
• How to identify `single” transfers in a known (complex) structure?
• Can currently available tools from (closed-loop) identification be used for this purpose?
Introduction

Some modules may be known (e.g. controllers)
Contents

- Methods for (classical) closed-loop ID
- Dynamic network setup
- Network identification
- Predictor input conditions
- Example
- Discussion

From open-loop and closed-loop identification to dynamic network identification
Methods for closed-loop identification

- **Direct method**
 Relying on full-order noise modelling
 \[\varepsilon(t, \theta) = H(\theta)^{-1}[y(t) - G(\theta)u(t)] \]

- **Two-stage, indirect, projection, IV**
 Relying on measured external excitation
 \[\varepsilon(t, \theta) = H(\rho)^{-1}[y(t) - G(\theta)u^r(t)] \]
 with input decomposed:
 \[u = u^r + u^v \]
 such that \(u^r \) and \(v \) uncorrelated

 ![Plant representation diagram]

 \[y(t) = G_0u(t) + H_0e(t) \]
 \(e \) white noise
 \(r \) and \(v \) uncorrelated
Methods for closed-loop identification

Consistency results for PE identification

- **Direct method** [Ljung, 1987]
 - full order noise model ($S \in \mathcal{M}$)
 - delay in every loop
 - sufficient excitation of u, i.e.
 \[\Phi_z(\omega) > 0 \ \forall \omega \quad z := \text{vec}(y, u) \]

- **Two-stage** [Van den Hof & Schrama, 1993]
 - no noise model required ($G_0 \in \mathcal{G}$)
 - no conditions on delays
 - sufficient excitation of u^r, i.e.
 \[\Phi_{u^r}(\omega) > 0 \ \forall \omega \]

Plant representation

\[y(t) = G_0 u(t) + H_0 e(t) \]

- e white noise
- r and v uncorrelated

\[G_0 \quad C \]
Question

- Can we utilize these tools for identification of transfer functions in a (complex) dynamic network?
Network Setup

Formalizing one link (transfer between w_i and w_j)

- On each node a disturbance v_j and a reference r_j might be present.
- Reference signals are uncorrelated to noise signals.
- N_j: set of nodes that has a direct causal link with node j, of which K_j are known transfers and U_j unknown.
Network Setup

Assumptions:
• Total of L nodes
• Network is well-posed
 $I - G^0$ invertible
• Stable (all signals bounded)
• All $w_m, m = 1, \cdots L$, measured, as well as all present r_m
• Modules may be unstable

\[
\begin{bmatrix}
 w_1 \\
 w_2 \\
 \vdots \\
 w_L
\end{bmatrix}
=
\begin{bmatrix}
 0 & G^0_{12} & \cdots & G^0_{1L} \\
 G^0_{21} & 0 & \cdots & G^0_{2L} \\
 \vdots & \vdots & \ddots & \vdots \\
 G^0_{L1} & G^0_{L2} & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
 w_1 \\
 w_2 \\
 \vdots \\
 w_L
\end{bmatrix}
+
\begin{bmatrix}
 r_1 \\
 r_2 \\
 \vdots \\
 r_L
\end{bmatrix}
+
\begin{bmatrix}
 v_1 \\
 v_2 \\
 \vdots \\
 v_L
\end{bmatrix}
\]
Contents

• Methods for (classical) closed-loop ID
• Dynamic network setup
• Network identification
• Predictor input conditions
• Example
• Discussion
Applying direct method to input w_i and output w_j will lead to biased results

- if the prediction error cannot be whitened, or equivalently
- If there are nodes in \mathcal{U}_j that are correlated to w_j

A MISO approach:

$$\varepsilon(t, \theta) = H_j(\theta)^{-1}[w_j - r_j - \sum_{k \in \mathcal{K}_j} G_{jk}^0 w_k - G_{ji}(\theta) w_i - \sum_{k \in \mathcal{U}_j} G_{jk}(\theta) w_k]$$

\[\hat{w}_j \text{ known}\]

Simultaneous identification of transfers G_{jk}^0, $k \in \mathcal{U}_j$ and a noise model for v_j
Network Identification – Direct method
Network Identification – Direct method
Network Identification – Direct method

Result direct method

The plant model $G_{jj}(\theta)$ is consistently estimated if:

- All parametrized plant and noise models are correctly parametrized, $G_{jk}(\theta)$, $k \in \mathcal{U}_j$; $H_j(\theta)$ ($S \in \mathcal{M}$)
- Every loop in the network that runs through node j has at least one delay (no algebraic loop)
- $\Phi_z(\omega) > 0$ $\forall \omega$, for $z := \text{vec}\{w_j, \{w_k\}_{k \in \mathcal{U}_j}\}$ (excitation condition)
- Noise source v_j is uncorrelated with all other noise terms in the network

[Dankers et al., CDC2012]
Main approach:
- Look for an external reference signal that has a connection with w_i
- And that does not act as an unmodelled disturbance on w_j
Algorithm:

- Determine whether there exists an r_m such that $w_i r_m$ is sufficiently exciting
- Construct:
 \[
 \tilde{w}_j = w_j - r_j - \sum_{k \in \mathcal{K}_j} G^0_{jk} w_k
 \]
 known terms
- Identify G^0_{ji} through PE identification with prediction error
 \[
 \varepsilon(t, \theta) = H_j(\rho)^{-1} \left[\tilde{w}_j - \sum_{k \in \mathcal{U}_{is}} G^0_{jk}(\theta) w^K_m \right]
 \]
 where all inputs $k \in \mathcal{U}_{is}$ are considered that are correlated to r_m
Network Identification – Two-stage method

Result two-stage method

The plant model $G_{ji}(\theta)$ is consistently estimated if:

- The plant models $G_{jk}(\theta)$ are correctly parametrized $k \in \mathcal{U}_{is}$
- The vector of (projected) input signals is sufficiently exciting
- Excitation signals are uncorrelated to noise disturbances

[Van den Hof et al., CDC2012]
Network Identification – Two-stage method

Observation:
• Consistent identification of single transfers is possible, dependent on network topology and reference excitation
• Full noise models are not necessary
• No conditions on uncorrelated noise sources, nor on absence of algebraic loops
• Excitation conditions on (projected) input signals
• Network topology conditions on r_m can simply be checked by tools from graph theory
Predictor input selection

What if only a selected number of variables can be measured?

or:
Where to put the sensors?
Predictor input selection

- If predictor inputs are not chosen correctly, consistent estimates not possible.
- Considerable flexibility in choosing predictor inputs

Conditions will be derived that the predictor inputs must satisfy.
First mechanism: parallel paths

Objective: consistently estimate G_{21}^0.

SISO approach. Try to estimate the dynamics between w_1 and w_2:

$$w_2 = G_{21}^0 w_1^{(n)} + G_{21}^0 w_1^{(v)} + G_{23}^0 w_3 + v_2$$

unmodeled term

Problem! "unmodeled term" (noise term) is correlated to input term, $w_1^{(r)}$.

TU/e
Technische Universiteit
Eindhoven
University of Technology
Predictor input selection: condition 1

Objective: obtain an estimate of G_{ji}^0.

Consistent estimates of G_{ji}^0 are possible if:

1. w_i and w_j are included as predictor inputs.
2. Each path from $w_i \rightarrow w_j$ passes through a node chosen as a predictor input.
Second mechanism: loops around the output

Objective: consistently estimate G_{21}^0.

SISO approach. Try to estimate the dynamics between w_1 and w_2:

$$w_2 = G_{21}^0 w_1^{(r)} + G_{21}^0 w_1^{(v)} + G_{23}^0 w_3 + v_2$$

unmodeled term

Problem! "unmodeled term" (noise term) is correlated to input term, $w_1^{(r)}$.
Second mechanism: loops around the output

Objective: consistently estimate G_{21}^0.

SISO approach. Try to estimate the dynamics between w_1 and w_2:

$$w_2 = G_{21}^0 w_1^{(r_1)} + G_{21}^0 w_1^{(v)} + G_{23}^0 w_3 + v_2$$

unmodeled term

Problem! "unmodeled term" (noise term) is correlated to input term, $w_1^{(r_1)}$.

Solution: Include $w_3^{(r_1)}$ in the predictor:

$$w_2 = G_{21}^0 w_1^{(r_1)} + G_{23}^0 w_3^{(r_1)} + G_{21}^0 w_1^{(v)} + G_{23}^0 w_3^{(v)} + v_2$$

unmodeled term
Objective: obtain an estimate of G^0_{ji}.

Consistent estimates of G^0_{ji} are possible if:

1. w_i and w_j are included as predictor inputs.
2. Each path from $w_i \rightarrow w_j$ passes through a node chosen as a predictor input.
3. Each loop from $w_j \rightarrow w_j$ passes through a node chosen as a predictor input.
Example with predictor input conditions

Objective: Estimate G_{21}^0. Project onto r_8, r_4, r_5.

Conditions: Include variable on every path
- $w_1 \rightarrow w_2$
- $w_2 \rightarrow w_2$

Conclude: include w_1, w_2, and ... as inputs to the predictor.
Example with predictor input conditions

Objective: Estimate G_{21}^0. Project onto r_8, r_4, r_5.

Conditions: Include variable on every path
- $W_1 \rightarrow W_2$
- $W_2 \rightarrow W_2$

Conclude: include w_1, w_2, and ... as inputs to the predictor.
Objective: Estimate G_{21}^0.
Project onto r_8, r_4, r_5.

Conditions: Include variable on every path
- $w_1 \rightarrow w_2$
- $w_2 \rightarrow w_2$

Conclude: include w_1, w_2, and ... as inputs to the predictor.
Objective: Estimate G_{21}^0. Project onto r_8, r_4, r_5.

Conditions: Include variable on every path
- $w_1 \rightarrow w_2$
- $w_2 \rightarrow w_2$

Conclude: include w_1, w_2, and ... as inputs to the predictor.
Objective: Estimate G_{21}.
Project onto r_8, r_4, r_5.

Conditions: Include variable on every path
- $w_1 \rightarrow w_2 \Rightarrow \text{Include } w_6 \text{ in predictor}$
- $w_2 \rightarrow w_2$

Conclude: Include w_1, w_2, w_6 and ... as input to the predictor.
Example with predictor input conditions

Objective: Estimate G_{21}^0.
Project onto r_8, r_4, r_5.

Conditions: Include variable on every path
- $w_1 \rightarrow w_2 \Rightarrow$ Include w_6 in predictor
- $w_2 \rightarrow w_2$

Conclude: include w_1, w_2, w_6 and ... as input to the predictor.
Example with predictor input conditions

Objective: Estimate G_{21}^0. Project onto r_8, r_4, r_5.

Conditions: Include variable on every path
- $w_1 \rightarrow w_2 \Rightarrow \text{Include } w_6 \text{ in predictor}$
- $w_2 \rightarrow w_2 \Rightarrow \text{Include } w_3 \text{ in predictor}$

Conclude: include $w_1, w_2, w_3,$ and w_6 as inputs to the predictor.
Summary

- Current framework for open/closed-loop identification has been extended to dynamic networks
- Methods for closed-loop identification extend to this case with some new properties
- Framework extends (easily) to noise on all variables (EIV)
- They are expected to provide the basic tools for dealing with the structure identification problem also
- So far only consistency considered (no variance)
- Many new questions pop up……

Further reading:
System Identification in Dynamic Networks

Paul M.J. Van den Hof

Arne Dankers, Peter Heuberger, Xavier Bombois

21st International Symposium on Mathematical Theory of Networks and Systems (MTNS’14), 7-11- July 2014, Groningen, The Netherlands

Papers: www.pvandenhof.nl/publications.htm

E-mail: p.m.j.vandenhof@tue.nl