Likelihood Based Uncertainty Bounding in Prediction Error Identification using ARX models

A Simulation Study

ECC 2007, Kos, Greece

Arjan den Dekker, Xavier Bombois and Paul Van den Hof

July 4, 2007

1

Delft University of Technology

Confidence regions

A 95% confidence region is a region in parameter space that attempts to cover the "true" parameter with probability 0.95.

July 4, 2007

Outline

- Data generating system and predictor model
- Statistical inference in PE identification
- Confidence regions and hypothesis tests
- Test statistics
- ARX modelling
- Simulation results
- Conclusions

July 4, 2007

Data generating system and predictor model

$$y(t) = G_0(q)u(t) + H_0(q)e(t)$$

- input (deterministic): $u^N = \{u(t)\}_{t=1,...,N}$
- output (stochastic): $y^N = \{y(t)\}_{t=1,...,N}$
- e(t) Gaussian white noise

Predictor model set $(S \in \mathcal{M})$:

 $\mathcal{M} := \{ (G(q,\theta), H(q,\theta)) | \theta \in \Theta \subset \mathbb{R}^n \}$

$\exists \theta_0 \ni G(q, \theta_0) = G_0(q) \text{ and } H(q, \theta_0) = H_0(q)$

Statistical inference

One-step ahead predictor:

 $\hat{y}(t|t-1;\theta) = H^{-1}(q,\theta)G(q,\theta)u(t) + [1-H^{-1}(q,\theta)]y(t)$

Prediction errors:

$$\begin{aligned} \epsilon(t,\theta) &= y(t) - \hat{y}(t|t-1;\theta) \\ \epsilon(t,\theta_0) &= e(t) \sim \mathcal{N}(0,\sigma^2) \end{aligned}$$

Joint probability density function of y^N :

$$f_y(y^N;\theta_0) = \prod_{t=1}^N \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2} (\underbrace{y(t) - \hat{y}(t|t-1;\theta_0)}_{\epsilon(t,\theta_0)})^2\right]$$

July 4, 2007

Statistical inference

$$S(\theta) = \frac{\partial \log f_y(y^N; \theta)}{\partial \theta} = \frac{-N}{2\sigma^2} \frac{\partial V_N(\theta)}{\partial \theta}$$
$$F(\theta) = -\mathbb{E}\left[\frac{\partial^2 \log f_y(y^N; \theta)}{\partial \theta^2}\right] = \frac{N}{2\sigma^2} \mathbb{E}\left[\frac{\partial^2 V_N(\theta)}{\partial \theta^2}\right]$$

Confidence region for θ_0 ?

Construction of confidence regions

$$H_0: \theta_0 = \theta$$
$$H_1: \theta_0 \neq \theta$$

To test H_0 against H_1 at significance level α , choose a test statistic $T(y^N, \theta)$ with a known distribution under H_0 and decide H_1 if:

$$T(y^N, \theta) > c(\alpha)$$

with $Pr[T(y^N, \theta) > c(\alpha)] = \alpha$ under H_0 .

 $100(1-\alpha)\%$ confidence region for θ_0 : $\left\{ \theta | T(y^N, \theta) \le c(\alpha) \right\}$

7

July 4, 2007

Test statistics

$$T_{T}(y^{N},\theta) = (\hat{\theta}_{N} - \theta)^{T} F(\theta)(\hat{\theta}_{N} - \theta)$$

$$T_{W}(y^{N},\theta) = (\hat{\theta}_{N} - \theta)^{T} F(\hat{\theta}_{N})(\hat{\theta}_{N} - \theta)$$

$$T_{R}(y^{N},\theta) = S(\theta)^{T} F^{-1}(\theta) S(\theta)$$

$$T_{LR}(y^{N},\theta) = \frac{N}{\sigma^{2}}(V_{N}(\theta) - V_{N}(\hat{\theta}_{N}))$$

$$\int_{0.14}^{0.14} \int_{0.12}^{0.14} \int_{0.12}^{0.$$

 $(100 - \alpha)\%$ confidence regions for θ_0 :

$$\left\{ heta | T(y^N, heta) \le c_{\chi}(n, lpha)
ight\}$$

α

16 18

8

10 **1**2 14 **c**_χ(**n**,α)

July 4, 2007

8

0.02

0

4 6

ARX modelling

$$G(q,\theta) = \frac{q^{-n_k}(b_0 + b_1q^{-1} + \dots + b_{n_b-1}q^{-n_b+1})}{1 + a_1q^{-1} + \dots + a_{n_a}q^{-n_a}}$$

$$H(q,\theta) = \frac{1}{1 + a_1q^{-1} + \dots + a_{n_a}q^{-n_a}}$$

$$\theta^T = [a_1 \cdots a_{n_a}b_0 \cdots b_{n_b-1}]$$

$$\varphi^T(t) = [-y(t-1) \cdots - y(t-n_a)u(t-n_k) \cdots u(t-n_k-n_b+1)]$$

$$\Phi = \begin{pmatrix} \varphi^T(1) \\ \vdots \\ \varphi^T(N) \end{pmatrix}$$

$$y^T = [y(1) \cdots y(N)]$$

$$N(V_N(\theta) - V_N(\hat{\theta}_N)) = (\theta - \hat{\theta}_N)^T \Phi \Phi^T(\theta - \hat{\theta}_N)$$

$$S(\theta) = \frac{1}{\sigma^2} \Phi^T(\mathbf{y} - \Phi\theta); \quad F(\theta_0) = \frac{1}{\sigma^2} \underbrace{\mathbb{E}} \begin{bmatrix} \Phi^T \Phi \end{bmatrix}$$

July 4, 2007

Confidence regions for ARX parameters

100(1 -
$$\alpha$$
)% confidence regions for θ_0 :
 $\left\{ \theta | (\theta - \hat{\theta}_N)^T X(\theta - \hat{\theta}_N) \le \sigma^2 c_{\chi}(n, \alpha) \right\}$

$$R(\theta_0) = \mathbb{E}\left[\Phi^T \Phi\right]$$

July 4, 2007

Result from asymptotic theory (θ_0 known)

Asymptotically valid expression for $cov(\hat{\theta}_N)$:

$$P_{\theta_0} = \frac{\sigma^2}{N} \left(\lim_{N \to \infty} \frac{1}{N} \sum_{t=1}^{N} \mathbb{E}_{ue} \left[\varphi(t) \varphi^T(t) \right] \right)^{-1}$$

100(1 - \alpha)% confidence region for θ_0
$$\left\{ \theta | (\hat{\theta}_N - \theta)^T P_{\theta_0}^{-1}(\hat{\theta}_N - \theta) \le c_{\chi}(n, \alpha) \right\}$$

July 4, 2007

Simulation experiment

50.000 data sets (y^N, u^N) Data generating system S:

$$y(t) - 1.5578y(t-1) + 0.5769y(t-2) = 0.1047u(t-1) + 0.0872u(t-2) + e(t)$$

 u^N (known) and e^N (unknown) realizations of Gaussian white noise proces, $\sigma_u^2 = 1, \sigma_e^2 = 0.5$.

For each data set, the model was identified and it was recorded if the constructed confidence regions contained θ_0 .

July 4, 2007

observed coverage rates

July 4, 2007

Conclusions

100(1 - α)% confidence regions for ARX: $\left\{ \theta | (\theta - \hat{\theta}_N)^T X(\theta - \hat{\theta}_N) \le \sigma^2 c_{\chi}(n, \alpha) \right\}$

• Confidence regions that incorporate information on the particular noise realization e^N in X (via Φ or $\hat{\theta}_N$) are most reliable.

• Confidence region based on LR test statistic ($X = \Phi^T \Phi$) performs best (in simulations).

July 4, 2007

ARX modelling

$$\varphi(t,\theta_0) = s_u(t,\theta_0) + s_e(t,\theta_0),$$

$$s_u(t,\theta_0) = \frac{\Lambda_G(q^{-1},\theta_0)}{H(q^{-1},\theta_0)}u(t); \quad s_e(t,\theta_0) = \frac{\Lambda_H(q^{-1},\theta_0)}{H(q^{-1},\theta_0)}e(t),$$
with $\Lambda_G(q^{-1},\theta)$ and $\Lambda_H(q^{-1},\theta)$ the $n \times 1$ gradient vectors of the transfer function $G(q^{-1},\theta)$
and $H(q^{-1},\theta)$ with respect to θ , respectively.

$$R(\theta_0) = \sum_{i=1}^{N} s_u(t,\theta_0)s_u^T(t,\theta_0) + \sum_{i=1}^{N} \mathbb{E}\left[s_e(t,\theta_0)s_e^T(t,\theta_0)\right]$$

Ц L t=1t=1

July 4, 2007

Result from asymptotic theory (θ_0 known)

Asymptotically valid expression for $cov(\hat{\theta}_N)$:

$$P_{\theta_0} = \frac{\sigma^2}{2\pi N} \left(\int_{-\pi}^{\pi} \left(\Gamma_G(e^{i\omega}, \theta_0) \Phi_u(\omega) + \Gamma_H(e^{i\omega}, \theta_0) \sigma^2 \right) d\omega \right)^{-1}$$

$$\Gamma_G(e^{i\omega},\theta_0) = \frac{\Lambda_G(e^{i\omega},\theta_0)\Lambda_G^*(e^{i\omega},\theta_0)}{H(e^{i\omega},\theta_0)H^*(e^{i\omega},\theta_0)},$$

$$\Gamma_H(e^{i\omega},\theta_0) = \frac{\Lambda_H(e^{i\omega},\theta_0)\Lambda_H^*(e^{i\omega},\theta_0)}{H(e^{i\omega},\theta_0)H^*(e^{i\omega},\theta_0)}$$

with $\Phi_u(\omega)$ the power spectrum of u(t).

$$\theta_0 \in \left\{ \theta | (\hat{\theta}_N - \theta)^T P_{\theta_0}^{-1} (\hat{\theta}_N - \theta) \le c_{\chi}(n, \alpha) \right\} \quad \text{w.p. } 1 - \alpha$$

July 4, 2007

″ T∪Delft