

Generalized sensing and actuation schemes for local module identification in dynamic networks

Karthik R. Ramaswamy, Paul M.J. Van den Hof, Arne G. Dankers

58th IEEE Conference on Decision and Control, Nice, France, December 11-13, 2019

k.r.ramaswamy@tue.nl www.sysdynet.eu

Dynamic Networks

Smart power grids

www.betterworldsolutions.eu

Brain networks

Brain networks from human MRI [1]

<u>Distributed/Decentralized</u> <u>process control</u>

Many examples for dynamically interconnected systems...

Dynamic network setup

Dynamic network setup

Assumptions:

- Known topology
- Network is stable and well posed
- Disturbances are stationary stochastic and can be correlated

$$\begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_L \end{bmatrix} = \begin{bmatrix} 0 & G_{12}^0 & \dots & G_{1L}^0 \\ G_{21}^0 & 0 & \dots & G_{2L}^0 \\ \vdots & \ddots & \ddots & \vdots \\ G_{L1}^0 & G_{L2}^0 & \dots & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_L \end{bmatrix} + \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_L \end{bmatrix} + H^0 \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_L \end{bmatrix}$$

 $w = G^0(q)w + r + v \qquad \qquad w = (I - G^0)^{-1}(r + v)$

 Elements of r can be zero (i.e. the nodes without excitation)

Single module identification

- For a network with known topology, identify a single module in a dynamic network based on the given data
- For example, identify G_{21}^0 on the basis of measured signals

Identifying options

Identify the MIMO system – from measured $m{r}$ and $m{w}$

$$w = (I - G^0)^{-1}[r + v]$$

A global approach that we wish to avoid. Why???

ightharpoonup Identify a subset of modules from a subset of signals in $m{r}$ and $m{w}$ (Local)

- Indirect Method
- Direct Method

Indirect method

- Uses external excitation signals r as predictor inputs
- Estimate consistently dynamics from r to nodes.
- Post-process it to get the target module. $\hat{G}_{j\mathcal{N}_{j}} = \hat{T}_{jr}[\hat{T}_{\mathcal{N}_{j}r}]^{-1}$
- Flexibility in location of actuators (r signals)

However, requires sufficient number of excitations and conditions on excitation of certain nodes.

[1] M. Gevers, et al. In Proc. 18th IFAC Symposium on System Identification (SYSID2018), 2018.

Direct method

- $\mathcal{N}_j = \{i, k_1, \dots, k_p\} o$ in-neighbors
- Assuming measurements of w's available and v_j uncorrelated with other v's
- Minimize the power of prediction error :

$$arepsilon_{j}(t, heta)=H_{j}^{-1}(heta)\left(w_{j}(t)-\sum_{oldsymbol{k}\in\mathcal{N}_{j}}oldsymbol{G_{jk}(q, heta)w_{k}(t)}-r_{j}(t)
ight)$$

Flexibility in selection of input node signals.
 Number of inputs can be reduced [2].

However, requires parallel path/loop conditions to be satisfied that requires certain nodes to be measured

 $w_{\mathcal{N}_i}$

^[1] P. M. J. Van den Hof et al. Automatica, 49(10):2994–3006, 2013.

Example

$$\{w_1, w_3, w_5\}
ightarrow \{w_2\}^{[1]}$$

$$\underbrace{\{m{r_1}, r_2, r_3\}
ightarrow \{w_2, w_3\}}_{indirect\ method}^{ extstyle extstyle$$

- What can we do if parallel path/loop conditions cannot be satisfied?
- What can we do if certain nodes cannot be excited?

We combine the ideas of direct and indirect methods to relax the restrictive situations on sensing and actuations

[1] A. Dankers et al. IEEE Transactions on Automatic Control, 61(4):937–952, 2016.

General philosophy

- Include both internal nodes and external excitation as predictor inputs
- Use a MIMO identification approach

We use "post-processing" of estimated modules

General philosophy

How to select the MIMO identification setup?

MIMO identification setup

- Start with input and output of the target module
- Add predictor inputs that block the parallel paths/loops
- Violation of parallel path condition
 - excite the path and add the excitation as input
 - measure a descendent and include in output
- Violation of loop condition and if w_j not excited
 - excite the loop and add the excitation as input
 - measure a descendent and include in output
- Each excitation for parallel path/loops should have at least one independent descendent measured
- Add an output also as input if it has unmeasured paths to any of the outputs

Identification

- ullet $ar{G}$ and $ar{R}$ can be consistently estimated using the MIMO identification setup :
 - under persistence of excitation conditions satisfied
 - some delay conditions satisfied
 - all external excitations r are uncorrelated with each other and with noise
- Using the elements of \bar{G} and \bar{R} , a consistent estimate of the target module is obtained. Analytical expression is provided in the paper.
- ▶ Noise correlations and confounding variables can be handled by adding outputs [1],[2].

[1] K. R. Ramaswamy, et al. A local direct method for module identification in dynamic networks with correlated noise. ArXiv.

Summary

- Generalized sensing and actuation scheme for consistent local module identification
- Merger of direct and indirect identification approaches
- Use of external signals and node signals as predictor inputs
- Relaxation of parallel path and loop conditions
- Higher flexibility in choice of signals
- A priori known modules can be accounted for

Generalized sensing and actuation schemes for local module identification in dynamic networks

<u>Karthik R. Ramaswamy</u>, Paul M.J. Van den Hof, Arne G. Dankers

58th IEEE Conference on Decision and Control, Nice, France, December 11-13, 2019

k.r.ramaswamy@tue.nl www.sysdynet.eu

