Fault Detection and Diagnosis using the Dynamic Network Framework

IFAC Symposium SYSID, Boston, MA, July 2024

Authors: Yibo Shi, Stefanie J. M. Fonken, Paul M. J. Van den Hof Presenter: Paul M. J. Van den Hof

Department of Electric Engineering, Control System Group

European Research Counc

Large-scale network systems

Autonomous driving network

Fault detection and diagnosis (FDD)

FDD methods become challenging as the size and complexity of the systems grow

Model-free FDD methods:

- Data-driven: AI & machine-learning^[1]
- Knowledge-based methods ^[2]

Model-based FDD methods:

- State observer, parameter estimation ^{[3], [4]}
- Residual analysis

3

Challenge

• Exploit interconnection structure

- G. Milis et al., IJCNN, 2016
 M. He et al., IEEE Transactions on Smart Grid, 2011
- [3] S. Simani, Model-based fault diagnosis, 2003

[4] R. Isermann, *Fault detection and diagnosis*, 2006[5] D. Nikitas

Dynamic network framework

Dynamic network setup:

- $w_i(t)$: measured node signals
- G_{ij}^0 : modules, LTI transfer functions
- $v_i(t) = H_i^0 e_i(t)$: process noise signals
- $r_i(t)$: external excitation signals

Dynamic network identification:

• Local module or full network identification [1-6]

When given a model of a dynamic network, can we detect and diagnose a fault in a local module by confronting the model with the data of the faulty system (including probing the faulty system)?

[1] P. Van den Hof et al., Automatica, 2013
[2] A. Dankers et al, IEEE-TAC, 2016
[3] H. Weerts et al. Automatica, 2018

[4] M. Gevers, SYSID, 2018[5] K. Ramaswamy et al., TAC, 2021[6] S. Fonken et al., Automatica, 2022

Research question and problem statement

How to perform **local fault detection and diagnosis** for an interconnected **network system**, using its model in the **dynamic network framework**?

Start point:

- A fault is $G_{ji}^0 \to G_{ji}^f$
- Local subnetwork model \widehat{G}
- Full network topology \mathcal{T}_G
- Possible noise information:
 - Noise model H⁰
 - Noise topology \mathcal{T}_H

Assumption: Every node in w is affected by a single noise source e only.

Research question and problem statement

How to perform **local fault detection and diagnosis** for an interconnected **network system**, using its model in the **dynamic network framework**?

Contents

- Introduction
- Residual analysis in dynamic networks
- Fault detection / diagnosis
- Conclusion

Residual in a local node

TU/e

Residual in a local node

TU/e

Residual analysis for model validation: Correlation test

-0.04

-30

-20

-10

20

30

10

0 Lag

Reject \mathcal{H}_0

• $R_{\hat{arepsilon}}(au)$, $R_{\hat{arepsilon},u}(au)$ Correlation

Correlation tests for dynamic networks

- Autocorrelation test: R_{ε_i}
- Cross-correlation test: $R_{\varepsilon_i w_i}$
- Cross-correlation test: $R_{\varepsilon_i r_i}$

If the noise model is not available then the crosscorrelations, $R_{\varepsilon_i r_i}$, $R_{\varepsilon_j w_i}$ are replaced by $R_{v_j r_i}$, $R_{v_j w_i}$

Correlation tests for dynamic networks

- Autocorrelation test: R_{ε_i}
- Cross-correlation test: $R_{\varepsilon_i w_i}$
- Cross-correlation test: $R_{\varepsilon_i r_i}$

•
$$R_{\varepsilon_j}$$
 , $R_{\varepsilon_j w_i}$, $R_{\varepsilon_j r_i}$

(b) Noise topology \mathcal{T}_H

• Some
$$R_{\varepsilon_j w_i}$$
 , $R_{\varepsilon_j r_i}$

(c) No noise information

Target module set S:

The set that contains all modules related to a correlation test.

Target module sets

• Autocorrelation test
$$R_{arepsilon_j}$$
 : $\mathcal{S}_{\hat{arepsilon}_j} = \{G_{jk} \mid k \in \mathcal{N}_j\}$

- Cross-correlation test $R_{\varepsilon_j w_i}$: $\mathcal{S}_{\hat{\varepsilon}_j w_i} = \mathcal{S}_{\hat{v}_j w_i} = \{G_{jk} \mid k \in \mathcal{N}_j \cap \mathcal{C}_i\}$
- Cross-correlation test $R_{\varepsilon_j r_i}$: $\mathcal{S}_{\hat{\varepsilon}_j r_i} = \mathcal{S}_{\hat{v}_j r_i} = \{G_{jk} \mid k \in \mathcal{N}_j \cap \mathcal{J}_i\}$
- C_i : the set of all node signals that are correlated with w_i
- \mathcal{J}_i : the set of node indices k, including i, for which a directed path exists from w_i to w_k

Target module sets Noise information Tests	(a) $H_{j}^{0}(q)$ & \mathcal{T}_{H}	(b) \mathcal{T}_H	(c) None
Autocorrelation test with $\hat{\varepsilon}_j$	$\mathcal{S}_{\hat{arepsilon}_j}, orall j$	Ø	Ø
Cross-correlation test with $\hat{\varepsilon}_j$ (or \hat{v}_j) and w_i	$\mathcal{S}_{\hat{arepsilon}_{j}w_{i}},i\in\mathcal{N}_{j}$	${\mathcal S}_{\hat v_j w_i}, i \in \mathcal N_j \setminus \mathcal V_j$	Ø
Cross-correlation test with $\hat{\varepsilon}_j$ (or \hat{v}_j) and r_i	$\mathcal{S}_{\hat{arepsilon}_j r_i},i\in\mathcal{N}_j$	$\mathcal{S}_{\hat{v}_j r_i}, i \in \mathcal{N}_j$	$\mathcal{S}_{\hat{v}_j r_i}, i \in \mathcal{N}_j$

• \mathcal{V}_i : the set of node indices k, for which a path exists from the innovation source e of w_i

13 Fault detection and diagnosis using the dynamic network framework

Contents

- Introduction
- Residual analysis in dynamic networks
- Fault detection & diagnosis
- Conclusion and future work

Example

Detect/diagnose possible fault in G_{12}

$$j = 1$$
 $\mathcal{N}_1 = \{2, 3\}$ $\mathcal{V}_1 = \{1\}$

$$C_2 = J_2 = \{1, 2, 3\}$$
 $C_3 = \{1, 2, 3\}$ $J_3 = \{1, 3\}$

	\square				
Available tests	R_{ε_1}	$R_{\varepsilon_1 w_2}$	$R_{\varepsilon_1 r_2}$	$R_{\varepsilon_1 r_3}$	
Target module sets	$\{G_{12}, G_{13}\}$	$\{G_{12}, G_{13}\}$	$\{G_{12}, G_{13}\}$	{ <i>G</i> ₁₃ }	

Adding r_2 does not help, but adding r_3 allows for diagnosis of the correct fault.

Example

Experiments with different noise information:

- (a) With noise model \hat{H}_1 and noise topology $\mathcal{T}_H: \mathbb{R}_{\varepsilon_1}$
- (b) With noise topology $\mathcal{T}_H: R_{\varepsilon_1 w_2}$
- (c) No noise information: $R_{\varepsilon_1 r_2}$

Vector valued correlation test:

The Correlation test using statistic Q (Q test):

If \mathcal{H}_0 is true, it follows from a variant of the central limit theorem that the following distribution holds^[1]:

$$Q_a(N,M) = rac{N}{\left(R^N_{\hatarepsilon_j}(0)
ight)^2} \sum_{ au=1}^M \left(R^N_{\hatarepsilon_j}(au)
ight)^2 \sim As \ \chi^2(M)$$

The autocorrelation test is for \mathcal{H}_0 is:

 $\left\{egin{array}{l} ext{if } Q_a(N,M) \leq c_\chi(lpha,M), ext{ then accept } \mathcal{H}_0 \ ext{otherwise, reject } \mathcal{H}_0 ext{ with a risk equal to } lpha \end{array}
ight.$

Example

The selection of the appropriate tests for a particular target module can be automated

Conclusion

How to perform **local fault detection and diagnosis** for an interconnected **network system**, using its model in the **dynamic network framework**?

- Designed model-based **procedure** for local MISO subnetwork FDD
- that can exploit topology information on the network
- It shows how to (in)validate local modules in a network
- and indicates whether it is attractive/necessary to add excitation signals for diagnosis.

