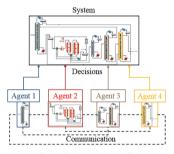


Distributed control problems are present in many fields!

 $(\mathsf{BetterWorldSolutions})$

Distributed control problems are present in many fields!

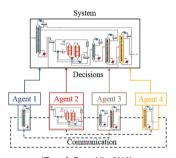
(BetterWorldSolutions)



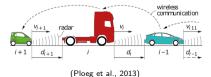
(Tang & Daoutidis, 2019)

Distributed control problems are present in many fields!

(BetterWorldSolutions)



(Tang & Daoutidis, 2019)



Applied distributed control for

- ► Power networks (Jokic et al., 2012), (Riverso et al., 2013), (Bürger et al., 2014), (Schuler et al., 2014), (Tegling, 2018)
- ► Irrigation networks (Cantoni et al., 2007), (Costa et al., 2014)
- ► Chemical reactors (Lin et al., 2009), (Christofides et al., 2013), (Chen et al., 2019)
- ► Multi-agent systems (Rice et al., 2009), (Lunze, 2019)
- ▶ Building climate control (Morosan et al., 2010), (Lamoudi, 2013), (Smith et al., 2020)
- ▶ ...

Applied distributed control for

- ► Power networks (Jokic et al., 2012), (Riverso et al., 2013), (Bürger et al., 2014), (Schuler et al., 2014), (Tegling, 2018)
- ► Irrigation networks (Cantoni et al., 2007), (Costa et al., 2014)
- ► Chemical reactors (Lin et al., 2009), (Christofides et al., 2013), (Chen et al., 2019)
- ► Multi-agent systems (Rice et al., 2009), (Lunze, 2019)
- ▶ Building climate control (Morosan et al., 2010), (Lamoudi, 2013), (Smith et al., 2020)
- ▶ ...

However, models are typically not directly available, but data is!

For an (unknown) interconnected system:

How to optimally design a distributed controller from measured data?

Model-based philosophy:

- ► Modelling: How to obtain the most relevant model from data?
- ► Control: What is the optimal distributed controller for a model?

Data-based philosophy:

► How to synthesize an optimal distributed controller directly from data?

For an (unknown) interconnected system:

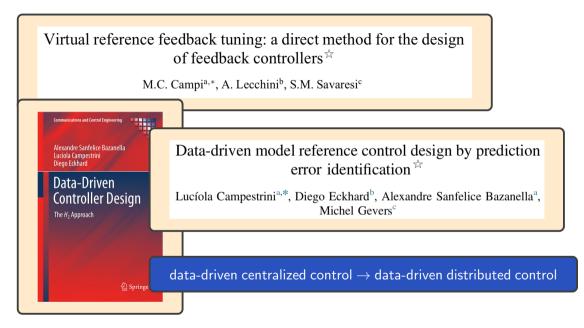
How to optimally design a distributed controller from measured data?

Model-based philosophy:

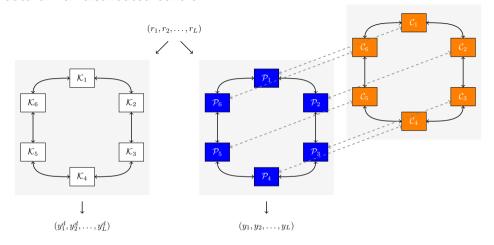
- ► Modelling: How to obtain the most relevant model from data?
- ► Control: What is the optimal distributed controller for a model?

Data-based philosophy:

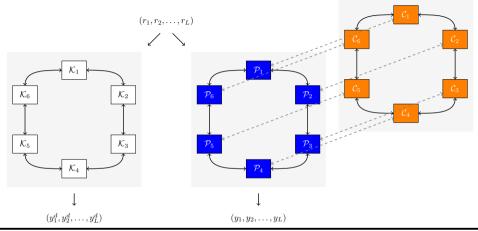
► How to synthesize an optimal distributed controller directly from data?



Direct data-driven distributed control



Direct data-driven distributed control



Problem

Find controllers C_1, C_2, \dots, C_L that minimize the global performance criterion $J_{MR}(\rho) := \bar{E}[y_1^d - y_1]^2 + \dots + \bar{E}[y_L^d - y_L]^2$ using data.

System setup

Reference model:

$$\mathcal{K}_i: \quad y_i^d = T_i(q)r_i$$

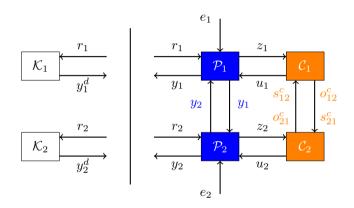
Interconnected system:

$$\mathcal{P}_i: \begin{cases} y_i = G_i(q)u_i + \sum_{j \in \mathcal{N}_i} G_{ij}(q)y_j + H_i(q)e_i \\ z_i = r_i - y_i \end{cases}$$

Distributed controller:

$$\mathcal{C}_i(
ho_i): \left\{ egin{aligned} u_i &= C_{ii}(q,
ho_i)z_i + \sum_{j \in \mathcal{N}_i} C_{ij}(q,
ho_i)s^c_{ij} \ o^c_{ij} &= K_{ij}(q,
ho_i)z_i + \sum_{h \in \mathcal{N}_i} K_{ijh}(q,
ho_i)s^c_{ih}, \, j \in \mathcal{N}_i \end{aligned}
ight.$$

System setup



Application of local canonical controllers (Steentjes, 2018) to our processes leads to

$$C_i^d: \begin{bmatrix} u_i \\ o_i^c \end{bmatrix} = \underbrace{\begin{bmatrix} \frac{T_i}{G_i(1-T_i)} & -\frac{1}{G_i}G_{il} \\ \frac{T_i}{1-T_i}\mathbf{1} & 0 \end{bmatrix}}_{=:C_i^d(q)} \begin{bmatrix} z_i \\ s_i^c \end{bmatrix}$$

Distributed control architecture is obtained by interconnecting local controllers

Proposition

$$J_{\text{MR}}(\rho_1^d,\rho_2^d)=0$$
 for ρ_1^d , ρ_2^d such that $C_1(\rho_1^d)=C_1^d$ and $C_2(\rho_2^d)=C_2^d$. $(e=0)$

Application of local canonical controllers (Steentjes, 2018) to our processes leads to

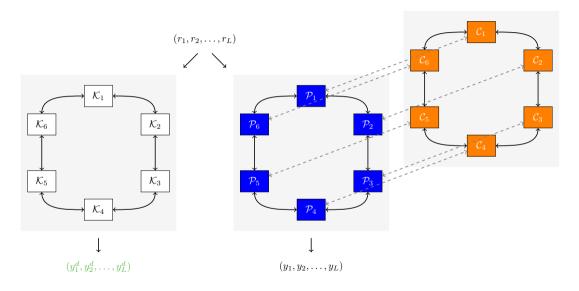
$$C_i^d: \begin{bmatrix} u_i \\ o_i^c \end{bmatrix} = \underbrace{\begin{bmatrix} \frac{T_i}{G_i(1-T_i)} & -\frac{1}{G_i}G_{il} \\ \frac{T_i}{1-T_i}\mathbf{1} & 0 \end{bmatrix}}_{=:C_i^d(q)} \begin{bmatrix} z_i \\ s_i^c \end{bmatrix}$$

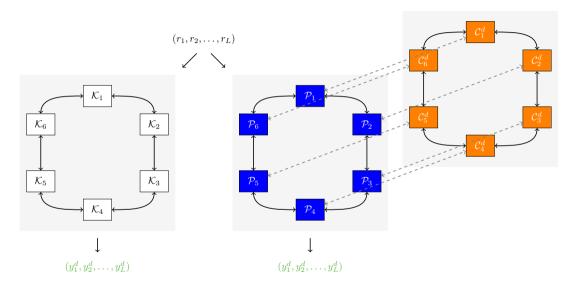
Distributed control architecture is obtained by interconnecting local controllers

Proposition

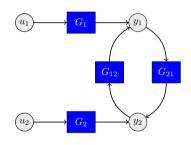
$$J_{\mathsf{MR}}(\rho_1^d, \rho_2^d) = 0$$
 for ρ_1^d , ρ_2^d such that $C_1(\rho_1^d) = C_1^d$ and $C_2(\rho_2^d) = C_2^d$. $(e = 0)$

Solution for a coupled reference model also exists! (Steentjes et al., CDC 2020)





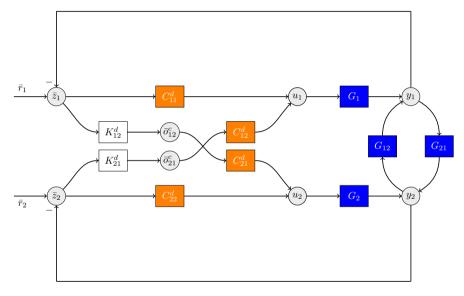
Distributed virtual reference feedback tuning (DVRFT)



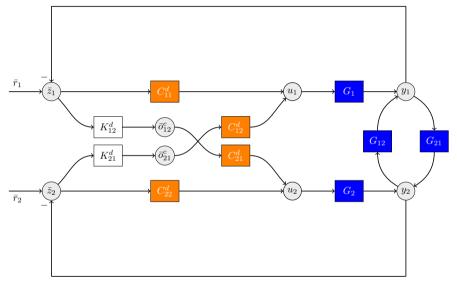
DVRFT principle (Steentjes et al., CDC 2020)

- ▶ For each $i \in V$, determine virtual signals: $y_i = T_i \bar{r}_i$, $\bar{z}_i = \bar{r}_i y_i$
- ► Identify controller modules C_{ii}^d in virtual reference network

Distributed virtual reference feedback tuning (DVRFT)

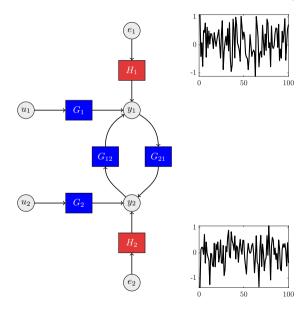


Distributed virtual reference feedback tuning (DVRFT)

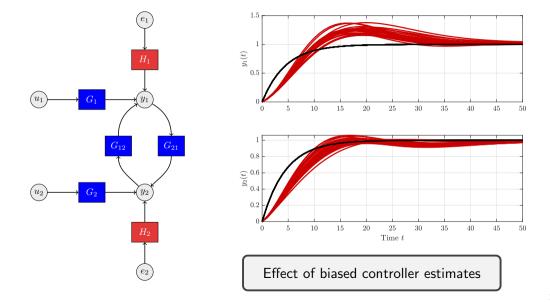


Distributed controller synthesis problem is turned into a network identification problem

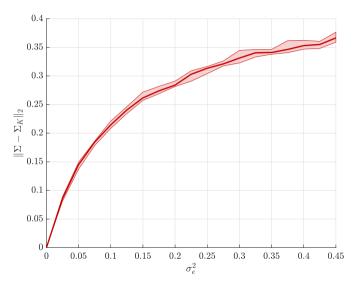
Noise in data-driven distributed control: is there a problem?



Noise in data-driven distributed control: is there a problem?



Noise in data-driven distributed control: is there a problem?



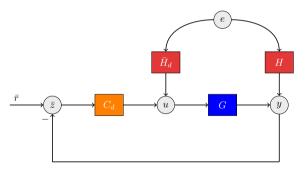
Noise entering the network \Rightarrow degraded achieved performance!

Dealing with noise

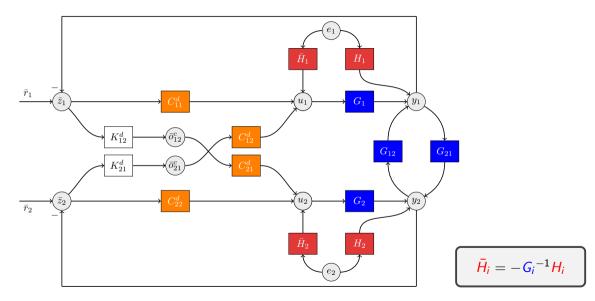
- ► Noise in (distributed) virtual reference feedback tuning:
 - ► Instrumental variables (linear parametrization, high variance)

Dealing with noise

- ► Noise in (distributed) virtual reference feedback tuning:
 - ► Instrumental variables (linear parametrization, high variance)
 - ► Modelling the noise?



Modelling noise in DVRFT



Modelling noise in DVRFT

Filter the prediction-error $\varepsilon_i = u_i - \hat{u}_i(\rho_i)$ with G_i ?

- \blacktriangleright Leads to consistent controller estimates if H_i is modelled!
- $ightharpoonup G_i$ is unknown \Rightarrow arguably leads to indirect data-driven control

Modelling noise in DVRFT

Filter the prediction-error $\varepsilon_i = u_i - \hat{u}_i(\rho_i)$ with G_i ?

- \blacktriangleright Leads to consistent controller estimates if H_i is modelled!
- ▶ G_i is unknown \Rightarrow arguably leads to indirect data-driven control

$$\frac{T_i}{1-T_i}=C_{ii}^dG_i$$

Predictor
$$\hat{u}_i(\rho_i) := \bar{H}_i^{-1}(\rho_i) \left(C_{ii}(\rho_i) \bar{z}_i + \sum_{j \in \mathcal{N}_i} C_{ij}(\rho_i) \bar{o}_{ji}^c \right) + (1 - \bar{H}_i(\rho_i)^{-1}) u_i;$$

Filter:
$$L_i = \frac{T_i}{1 - T_i} = \frac{C_{ii}^d G_i}{G_i}$$

Noise model:
$$\bar{H}_i(\rho_i) = -C_{ii}(\rho_i)\check{H}_i(\rho_i)$$

Theorem

Suppose $\Phi_{\zeta_i}(\omega) > 0$ for all $\omega \in [-\pi, \pi]$, $\zeta_i = \operatorname{col}(\bar{z}_i, u_i, \operatorname{col}_{j \in \mathcal{N}_i} \bar{o}_{ji}^c)$, $\exists \rho_i^d \colon C_i^d = C_i(\rho_i^d)$, $H_i = \check{H}_i(\rho_i^d)$ and G_{ii} contains a delay for $j \in \mathcal{N}_i$.

Then the global minimum point ho_i^* of

$$V_i^F(\rho_i) = \bar{E}[L_i(u_i - \hat{u}_i(\rho_i))]^2$$

satisfies $C_{ii}(\rho_i^*) = C_{ii}^d$, $C_{ij}(\rho_i^*) = C_{ij}^d$, $j \in \mathcal{N}_i$, and $\breve{H}_i(\rho_i^*) = H_i$.

Example

System dynamics

$$G_1(q)=rac{c_1}{q-a_1}, \quad G_{12}(q)=rac{d_1}{q-a_1}, \quad H_1=rac{q}{q-a_1}$$
 $G_2(q)=rac{c_2}{q-a_2}, \quad G_{21}(q)=rac{d_2}{q-a_2}, \quad H_2=rac{q}{q-a_2}$

Reference model

$$T_i(q) = \frac{0.2}{q - 0.8}, \quad i \in \{1, 2\}$$

- ▶ Identify ideal distributed controller from N = 500 data samples:
 - Distributed virtual reference feedback tuning (DVRFT)
 - DVRFT with instrumental variables
 - ▶ DVRFT with tailor-made noise model

Example

System dynamics

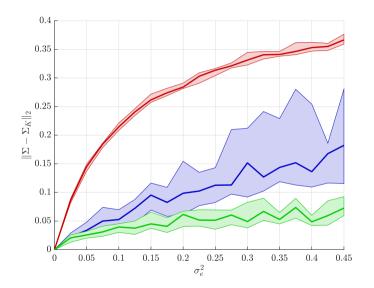
$$G_1(q)=rac{c_1}{q-a_1}, \quad G_{12}(q)=rac{d_1}{q-a_1}, \quad H_1=rac{q}{q-a_1}$$
 $G_2(q)=rac{c_2}{q-a_2}, \quad G_{21}(q)=rac{d_2}{q-a_2}, \quad H_2=rac{q}{q-a_2}$

Reference model

$$T_i(q) = \frac{0.2}{q - 0.8}, \quad i \in \{1, 2\}$$

- ▶ Identify ideal distributed controller from N = 500 data samples:
 - Distributed virtual reference feedback tuning (DVRFT)
 - DVRFT with instrumental variables
 - ► DVRFT with tailor-made noise model

Example



- DVRFT
- DVRFT + IV
- DVRFT + H

Concluding remarks

Summary:

- ► Data-driven synthesis of a distributed controller for interconnected systems with disturbances
- ► Capturing noise with a tailor-made noise model ⇒ consistent controller estimates

Remarks & future work:

- ► Applicable in the SISO case (VRFT)
- ► Possibly non-linear parametrizations: complexity-performance trade-off
- ► Multi-step least squares & distributed identification for complexity reduction

Handling disturbances: one step closer to practical distributed control from data

Thank you for your attention!

