

Tutorial session: Data-driven modeling in dynamic networks

- Introduction (Paul Van den Hof) 15:30 16:00
 - Modeling framework, identification challenges, identifiability
- Graph-based method for analysing identifiability and allocating excitation signals (Xiaodong Cheng) 16:00 – 16:30
- Algorithm for full network identification and a case study in gas pipeline monitoring (Arne Dankers) 16:30 – 17:00
- Identification of single modules in a dynamic network (Karthik Ramaswamy) 17:00 – 17:30

Feel free to raise questions in the Q&A

Introduction – dynamic networks

Decentralized process control

Smart power grid

Betterworldsolutions.eu

Stock market

Materassi and Innocenti, 2010

PCB testing

T&M Solutions, Romex BV

Autonomous driving

www.envidia.com

Brain network

P. Hagmann et al. (2008)

Hydrocarbon reservoirs

Mansoori (2014)

Physiological models

Christie, Achenie and Ogunnaike (2014)

Introduction

Overall trend:

- Systems become more and more interconnected and large scale
- The scope of system's control and optimization becomes wider From components/units to systems-of-systems
- Modeling, monitoring, control and optimization actions become distributed
- Data is playing an increasing role in monitoring, decision making, control of (highly autonomous) smart systems (machine learning, AI)
- > Learning models/actions from data (including physical insights when available)

Introduction

The classical (multivariable) identification problems [1]:

Identify a model of G on the basis of measured signals u, y (and possibly r), focusing on *continuous LTI dynamics*.

We have to move from a simple and fixed configuration to deal with *structure* in the problem.

Network models

Network models

State space representation

$$x(k+1) = Ax(k) + Bu(k)$$
$$y(k) = Cx(k) + Du(k)$$

- States as nodes in a (directed graph)
- State transitions (1 step in time) reflected by a_{ij}
- Transitions are encoded in links
- Effect of transitions are summed in the nodes
- Self loops are allowed
- Actuation (u) and sensing (y) reflected by separate links

Network models

State space representation [1]

Module representation [2]

Compare e.g. classical signal flow graphs [3]

^[3] S.J. Mason, 1953, 1955.

^[1] Goncalves, Warnick, Sandberg, Yeung, Yuan, Scherpen,...

Basic building block:

$$w_j(t) = \sum_{k \in \mathcal{N}_j} G^0_{jk}(q) w_k(t) + r_j(t) + v_j(t)$$

 w_i : node signal

 r_i : external excitation signal

 v_j : (unmeasured) disturbance, stationary stochastic process

 G_{ik}^0 : module, rational proper transfer function

Node signals: $w_1, \cdots w_L$

Interconnection structure / topology of the network is encoded in $\mathcal{N}_j,\ j=1,\cdots L$

Collecting all equations:

$$\begin{bmatrix} w_1(t) \\ w_2(t) \\ \vdots \\ w_L(t) \end{bmatrix} = \begin{bmatrix} 0 & G_{12}^0(q) & \cdots & G_{1L}^0(q) \\ G_{21}^0(q) & 0 & \cdots & G_{2L}^0(q) \\ \vdots & \ddots & \ddots & \vdots \\ G_{L1}^0(q) & G_{L2}^0(q) & \cdots & 0 \end{bmatrix} \begin{bmatrix} w_1(t) \\ w_2(t) \\ \vdots \\ w_L(t) \end{bmatrix} + R^0 \begin{bmatrix} r_1(t) \\ r_2(t) \\ \vdots \\ r_K(t) \end{bmatrix} + H^0(q) \begin{bmatrix} e_1(t) \\ e_2(t) \\ \vdots \\ e_p(t) \end{bmatrix}$$
Network matrix $G^0(q)$

$$w(t)=G^0(q)w(t)+R^0(q)r(t)+v(t); \hspace{0.5cm} v(t)=H^0(q)e(t); \hspace{0.5cm} cov(e)=\Lambda$$

- Typically $m{R^0}$ is just a (static) selection matrix, indicating which nodes have an excitation signal.
- The topology of the network is encoded in the structure (non-zero entries) of G^0 .
- r and e are called external signals.

$$w = G^0 w + R^0 r + H^0 e$$

Assumptions:

- Total of *L* nodes, no self-loops
- Network is well-posed and stable, i.e. $(I-G^0)^{-1}$ exists and is stable
- Modules are dynamic, LTI, proper, may be unstable
- Disturbances can be correlated: $m{H^0}$ not necessarily diagonal

Data-driven modeling

Many new data-driven modeling questions can be formulated

Measured time series:

$$\{w_i(t)\}_{i=1,\dots L}; \ \{r_j(t)\}_{j=1,\dots K}$$

Under which conditions can we estimate from (w,r) the topology and/or dynamics of the full network?

How/when can we learn a local module from data (with known/unkown network topology)? Where to sense / actuate?

How can we benefit from a priori known modules?

Fault detection and diagnosis; detect/handle nonlinear elements

Can we distribute the computations?

Measured time series:

$$\{w_i(t)\}_{i=1,\dots L}; \ \{r_j(t)\}_{j=1,\dots K}$$

Many new data-driven modeling questions can be formulated

- Identification of a local module (known topology)
- Identification of the full network
- Topology estimation
- Identifiability
- Sensor and excitation allocation
- Fault detection
- User prior knowledge of modules
- Distributed identification
- Scalable algorithms

Identifiability

blue = unknown red = known

Question: Can different dynamic networks be *distinguished* from each other from measured signals *w* , *r* ?

OR: If different networks in our model set generate the same w for a given r then we have lack of network identifiability

The identifiability problem:

The network **model**:

$$w(t) = G(q)w(t) + R(q)r(t) + \underbrace{H(q)e(t)}_{v(t)}$$

can be transformed with any rational P(q):

$$P(q)w(t) = P(q)\{G(q)w(t) + R(q)r(t) + H(q)e(t)\}$$

to an **equivalent model**:

$$w(t) = ilde{G}(q)w(t) + ilde{R}(q)r(t) + ilde{H}(q)e(t)$$

Nonuniqueness, unless there are structural constraints on G, R, H.

^[1] Weerts, Linder et al., Automatica, 2020.

^[2] Bottegal et al., SYSID 2017

Consider a **network model set**:

$$\mathcal{M} = \{(G(\theta), R(\theta), H(\theta))\}_{\theta \in \Theta}$$

representing structural constraints on the considered models:

- modules that are fixed and/or zero (topology)
- locations of excitation signals
- disturbance correlation

When are network models **equivalent** in this set?

If they provide the same
$$\ T_{wr} \ := \ (I-G)^{-1}R, \ \ ext{and}$$

$$\Phi_{ar v} \ := \ (I-G)^{-1}HH^*(I-G)^{-*}$$

with
$$w(t) = T_{wr}(q)r(t) + ilde{v}(t)$$

Definition Network identifiability^[1]

For a network model set \mathcal{M} , consider a model $M(heta_0) \in \mathcal{M}$ and the implication

$$M(heta_0) \sim M(heta_1) \Longrightarrow \ M(heta_0) = M(heta_1),$$
 for all $M(heta_1) \in \mathcal{M}$

Then \mathcal{M} is

- ullet globally identifiable from (w,r) at $M(heta_0)$ if the implication holds for $M(heta_0)$;
- ullet globally identifiable from (w,r) if it holds for all $M(heta_0)\in \mathcal{M}$;
- ullet generically identifiable $^{[2]}$ from (w,r) if it holds for almost all $M(heta_0)\in \mathcal{M}$;

^[1] Weerts et al., Automatica, March 2018;

Second network identifiability result

Sufficient condition for network identifiability^[1] – general case

Consider model set \mathcal{M} , and define for each $j \in [1, L]$:

 $\check{T}_i :=$ the transfer function from

- ullet all external signals (r,e) that do not enter w_i through a parametrized module, to
- all node signals w that map to w_j through a parametrized module.

Then ${\mathcal M}$ is globally network identifiable from (r,w) if for all $j\in [1,L]$:

 $reve{T_j}$ is full row rank for all $heta \in \Theta$.

Example 5-node network

Consider the model set determined by:

$$G(\theta) = \begin{bmatrix} 0 & G_{12}(\theta) & 0 & 0 & G_{15}(\theta) \\ G_{21}(\theta) & 0 & G_{23}(\theta) & 0 & 0 \\ 0 & 0 & 0 & G_{34}(\theta) & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & G_{53}(\theta) & 0 & 0 \end{bmatrix} \qquad [H\ R] = \begin{bmatrix} H_{11}(\theta) & H_{12}(\theta) & 0 & 0 & 0 \\ H_{21}(\theta) & H_{22}(\theta) & 0 & 0 & 0 \\ 0 & 0 & H_{3}(\theta) & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$[H \; R] = egin{bmatrix} H_{11}(heta) & H_{12}(heta) & 0 & 0 & 0 \ H_{21}(heta) & H_{22}(heta) & 0 & 0 & 0 \ 0 & 0 & H_{3}(heta) & 0 & 0 \ 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Example 5-node network (continued)

Rank condition:

evaluation of $reve{T}_j$ for j=1:

$$reve{T_1}: egin{bmatrix} v_3 \ r_4 \ r_5 \end{bmatrix}
ightarrow egin{bmatrix} w_2 \ w_5 \end{bmatrix} \,\,$$
 has to have full row rank $orall heta \in \Theta$

Example 5-node network (continued)

Issues:

- Such a rank test is not easy to apply
- ullet and needs to be done for every $j=1,\cdots L$

Generic identifiability provides more attractive and constructive conditions

(see next presentation by Xiaodong Cheng)

Summary network modeling

- Introduced an estimation-oriented way for modelling dynamic networks
- Extended transfer function approach approach to include structure (topology)
- This raises an abundance of new data-driven modeling questions
- Introduced the concept of network identifiability

Tutorial session: Data-driven modeling in dynamic networks

- Introduction (Paul Van den Hof) 15:30 16:00
 - Modeling framework, identification challenges, identifiability
- Graph-based method for analysing identifiability and allocating excitation signals (Xiaodong Cheng) 16:00 – 16:30
- Algorithm for full network identification and a case study in gas pipeline monitoring (Arne Dankers) 16:30 – 17:00
- Identification of single modules in a dynamic network (Karthik Ramaswamy) 17:00 – 17:30

Feel free to raise questions in the Q&A

Further reading

- P.M.J. Van den Hof, A. Dankers, P. Heuberger and X. Bombois (2013). Identification of dynamic models in complex networks with prediction error methods basic methods for consistent module estimates. *Automatica*, Vol. 49, no. 10, pp. 2994-3006.
- A. Dankers, P.M.J. Van den Hof, X. Bombois and P.S.C. Heuberger (2015). Errors-in-variables identification in dynamic networks consistency results for an instrumental variable approach. *Automatica*, Vol. 62, pp. 39-50, December 2015.
- A. Dankers, P.M.J. Van den Hof, P.S.C. Heuberger and X. Bombois (2016). Identification of dynamic models in complex networks with predictior error methods predictor input selection. *IEEE Trans. Autom. Contr.*, 61 (4), pp. 937-952, 2016.
- H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2018). Identifiability of linear dynamic networks. *Automatica*, 89, pp. 247-258, March 2018.
- H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2018). Prediction error identification of linear dynamic networks with rank-reduced noise. *Automatica*, *98*, pp. 256-268, December 2018.
- H.H.M. Weerts, J. Linder, M. Enqvist and P.M.J. Van den Hof (2019). Abstractions of linear dynamic networks for input selection in local module identification. Automatica, Vol. 117, July 2020.
- P.M.J. Van den Hof, A.G. Dankers and H.H.M. Weerts (2018). System identification in dynamic networks. Computers & Chemical Engineering, Vol. 109, pp. 23-29, January 2018.

