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Tutorial session: Data-driven modeling in dynamic networks

* Introduction (Paul Van den Hof) 15:30 — 16:00
* Modeling framework, identification challenges, identifiability

* Graph-based method for analysing identifiability and allocating excitation signals
(Xiaodong Cheng) 16:00 — 16:30

* Algorithm for full network identification and a case study in gas pipeline monitoring
(Arne Dankers) 16:30—-17:00

* |dentification of single modules in a dynamic network
(Karthik Ramaswamy) 17:00—-17:30

Feel free to raise questions in the Q&A
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Introduction

Overall trend:

e Systems become more and more interconnected and large scale

* The scope of system’s control and optimization becomes wider
From components/units to systems-of-systems

* Modeling, monitoring, control and optimization actions become distributed

* Data is playing an increasing role in monitoring, decision making, control of
(highly autonomous) smart systems (machine learning, Al)

* - Learning models/actions from data (including physical insights when available)

TU/e



Introduction

The classical (multivariable) identification problems[ ]

open loop closed loop 4
\4
—( G —

Identify a model of G on the basis of measured signals u, y
(and possibly 7), focusing on continuous LTI dynamics.

We have to move from a simple and fixed configuration
to deal with structure in the problem.

WLjung (1999), Séderstrdm and Stoica (1989), Pintelon and Schoukens (2012)
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Network models

D. Materassi and M.V. Salapaka (2012) www.momo.cs.okayama-u.ac.jp E.A. Carara and F.G. Moraes (2008) P.M.J. Van den Hof et al (2013)
J.C. Willems (2007) X.Cheng (2019) I U e
R.N. Mantegna (1999) D. Koller and N. Friedman (2009) P.E. Paré et al (2013) E. Yeung et al (2010)



Network models
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State space representation

x(k+1) = Ax(k)+ Bu(k)
y(k) = Cz(k)+ Du(k)

States as nodes in a (directed graph)

State transitions (1 step in time) reflected by a;;
Transitions are encoded in links

Effect of transitions are summed in the nodes
Self loops are allowed

Actuation (u) and sensing (y) reflected by separate links
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Network models
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State space representation 1! o
Compare e.g. classical signal flow graphs 3!

[1] Goncalves, Warnick, Sandberg, Yeung, Yuan, Scherpen,... [3] S.J. Mason, 1953, 1955. TU/e
[2] VdH, Dankers, Goncalves, Warnick, Gevers, Bazanella, Hendrickx, Materassi, Weerts, ...
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Dynamic network setup

Ve % - module

external excitation
process noise
node signal
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Dynamic network setup
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Dynamic network setup

Ve % - module

external excitation
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Dynamic network setup

Ve % - module

external excitation
Process noise
node signal
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Dynamic network setup

- module

external excitation
process noise
node signal
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Dynamic network setup

Basic building block:

0
w;(t) = Y Gh(@wi(t) + 7;(t) + v;(t)
keN;
w;: node signal
r; : external excitation signal
v; : (unmeasured) disturbance, stationary stochastic process
qu: module, rational proper transfer function
J
Node signals: wq,+* - wg,
Interconnection structure / topology of the network is encoded in Nj, 7 = 1,--+ L

J. Gongalves and S. Warnick, IEEE TAC, 2008.
PVdH et al., Automatica, 2013.
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Dynamic network setup

Collecting all equations:

w (t) 0 G%(g) - GEL(q) wi (t) r(t) e1(t)
wat) | _ | Gnle) 0 e Gopla) || wal®) | po | m28) | gogg | e2(®)
wi () GY.(q) Gy --- O wr(t) r(t) en(t)

I o
Network matrix G°(q)

w(t) = GY(Qw(t) + R%(q)r(t) + v(t);  w(t) = H(q)e(t); cov(e) = A

e Typically RY isjust a (static) selection matrix, indicating which nodes have an excitation signal.

 The topology of the network is encoded in the structure (non-zero entries) of GP.

e 1 and e are called external signals.

J. Gongalves and S. Warnick, IEEE TAC, 2008. TU
PVdH et al., Automatica, 2013. e
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Dynamic network setup

szow—l—RO'r—l—HOe

Assumptions:

Total of L nodes, no self-loops

Network is well-posed and stable, i.e.
(I — G°)~1! exists and is stable

Modules are dynamic, LTI, proper,
may be unstable

Disturbances can be correlated:
H? not necessarily diagonal

TU/e



Data-driven modeling

Many new data-driven modeling
guestions can be formulated

Measured time series:
{wi(t)}i=1,...05 {rj®)}j=1,..K

TU/e
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Model learning problems

Under which conditions can we estimate from (w,r) the topology
and/or dynamics of the full network?

TU/e
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Model learning problems

How/when can we learn a local module from data
(with known/unkown network topology) ? Where to sense / actuate?

TU/e
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Model learning problems

How can we benefit from a priori known modules?

TU/e
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Model learning problems

Fault detection and diagnosis; detect/handle nonlinear elements

TU/e
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Model learning problems

Can we distribute the computations?

TU/e



Dynamic network setup

Many new data-driven modeling
guestions can be formulated

Measured time series:
{wi(t)}i=1,...05 {rj®)}j=1,..K

e Scalable algorithms

TU/e
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Network identifiability

blue = unknown
red =known

Question: Can different dynamic networks be distinguished from each other from
measured signals w, r?

OR: If different networks in our model set generate the same w for a given r
then we have lack of network identifiability

TU/e
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Network identifiability

The identifiability problem:
The network model:

w(t) = G(q)w(t) + R(q)r(t) + H(q)e(t)
v(t)

can be transformed with any rational P(q) :

P(q)w(t) = P(g){G(q)w(t)+R(q)r(t)+H(q)e(t)}
to an equivalent model:
w(t) = G(q)w(t) + R(q)r(t) + H(q)e(t)

=) NONuniqueness, unless there are structural constraints on G, R, H.

[1] Weerts, Linder et al., Automatica, 2020.
[2] Bottegal et al., SYSID 2017

TU/e



Network identifiability

Consider a network model set:
M = {(G(0), R(6), H(0))}oco

representing structural constraints on the considered models:

* modules that are fixed and/or zero (topology)
* Jlocations of excitation signals
e disturbance correlation

When are network models equivalent in this set?
If they provide the same To,r = (I — G)_lR, and
®; = I-G)'HH*(I-G)™*

with w(t) = Twr(q)7(t) + 3(t)

[1] Weerts et al., SYSID2015; Weerts et al., Automatica, March 2018;

28
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Network identifiability

Definition Network identifiability!*!
For a network model set M, consider a model M (6p) € M and the implication
M(Go) ~ M(Bl) — M(Qo) = M(@l),
forall M (6:) € M

Then M is
o globally identifiable from (w, r) at M (6y) if the implication holds for M (6g);

o globally identifiable from (w, r) if it holds for all M (68y) € M,

o generically identifiable!?! from (w, 7) if it holds for almost all M (8y) € M;

[1] Weerts et al., Automatica, March 2018; TU/e
[2] Hendrickx et al., IEEE-TAC, 2019.
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Second network identifiability result

Sufficient condition for network identifiability! — general case
Consider model set M, and define for each 5 € [1, L]:
T’; := the transfer function from

o all external signals (7, e) that do not enter w; through a parametrized module, to

* all node signals w that map to w; through a parametrized module.

Then M is globally network identifiable from (r, w) if forall 3 € [1, L]:

e

T} is full row rank for all 6 € ©.

[1] Weerts et al, Automatica, March 2018.

TU/e
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Example 5-node network

Consider the model set determined by:

G(9) =

0
G21(0)
0
0
0

G12(0)
0

0
1
0

0
G23(0)
0
0
Gs3(0)

[H R] =

[H11(0) H12(0)
H21(9) H22(0)

0
0
0

0
0
0

0

0
H3(0)

0

0

o= O o O
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Example 5-node network (continued)

Rank condition:

evaluation of T} for j = 1:

Is Vy

Wy

Vo Iy

V3

4]

0 G200 0 0 Gi5(0)] [H1,(0) Hi2() 0 0 0]
G21(0) 0 Ga(0) 0 0 H,1(0) Hz2(0) 0 0 0
GO)=| o 0 0 Gsa(6) © [HR=| o0 0 H36) 0 0
0 1 0 0 0 0 0 0 10
0 0 Gs3(0) 0 0 | 0 0 0 0 1
K-|—‘;:5
V3 w
Ty : |rqa| — [w2] has to have full row rank VO € ®
5
s

TU/e
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Example 5-node network (continued)

Is Vy V2 I

V3

4]

Issues:

e Such a rank test is not easy to apply

e and needs to be done foreveryy = 1,--- L

|Generic identifiability provides more attractive and constructive conditions

(see next presentation by Xiaodong Cheng)

TU/e
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Summary network modeling

* Introduced an estimation-oriented way for modelling dynamic networks
* Extended transfer function approach approach to include structure (topology)

e This raises an abundance of new data-driven modeling questions

* Introduced the concept of network identifiability

TU/e
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Tutorial session: Data-driven modeling in dynamic networks

* Introduction (Paul Van den Hof) 15:30 — 16:00
* Modeling framework, identification challenges, identifiability

* Graph-based method for analysing identifiability and allocating excitation signals
(Xiaodong Cheng) 16:00 — 16:30

* Algorithm for full network identification and a case study in gas pipeline monitoring
(Arne Dankers) 16:30—-17:00

* |dentification of single modules in a dynamic network
(Karthik Ramaswamy) 17:00—-17:30

Feel free to raise questions in the Q&A

TU/e
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Further reading

P.M.J. Van den Hof, A. Dankers, P. Heuberger and X. Bombois (2013). Identification of dynamic models in complex networks with
prediction error methods - basic methods for consistent module estimates. Automatica, Vol. 49, no. 10, pp. 2994-3006.

A. Dankers, P.M.J. Van den Hof, X. Bombois and P.S.C. Heuberger (2015). Errors-in-variables identification in dynamic networks -
consistency results for an instrumental variable approach. Automatica, Vol. 62, pp. 39-50, December 2015.

A. Dankers, P.M.J. Van den Hof, P.S.C. Heuberger and X. Bombois (2016). Identification of dynamic models in complex networks with
predictior error methods - predictor input selection. IEEE Trans. Autom. Contr., 61 (4), pp.937-952, 2016.

H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2018). Identifiability of linear dynamic networks. Automatica, 89, pp. 247-258,
March 2018.

H.H.M. Weerts, P.M.J. Van den Hof and A.G. Dankers (2018). Prediction error identification of linear dynamic networks with rank-
reduced noise. Automatica, 98, pp. 256-268, December 2018.

H.H.M. Weerts, J. Linder, M. Enqgvist and P.M.J. Van den Hof (2019). Abstractions of linear dynamic networks for input selection in
local module identification. Automatica, Vol. 117, July 2020.

P.M.J. Van den Hof, A.G. Dankers and H.H.M. Weerts (2018). System identification in dynamic networks. Computers & Chemical
Engineering, Vol. 109, pp. 23-29, January 2018.

Papers available at www.pvandenhof.nl TU/e
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