

Dynamic network setup

$$w_j(t) = \sum_{k \in \mathcal{N}_j} G_{ji}(q) w_i(t) + r_j(t) + v_j(t)$$

 w_j node signals, $j=1,\cdots L$

 G_{ii} modules (LTI)

 r_{j} external excitation

 $v_{\it j}$ disturbance signal

$$w = Gw + Rr + He$$

Single module identification

The problem:

For a network with known topology: Identify G_{21}^0 on the basis of selected measured signals (w, r)

Preference for "local" measurements and limited excitation

Single module identification

Options:

- Indirect method^{[1],[2]} Dependent on excitation from $m{r}$ only
- Direct method^{[1],[3],[4]}
 Excitation from (r, v)Maximum likelihood results

TU/e

^[1] VdHof et al., Automatica 2013

^[2] Gevers et al., SYSID 2018; Bazanella et al., CDC 2019

Direct method

Full network equation:

$$w = Gw + Rr + He$$

Signal selection

Predictor model after signal selection:

$$w_{\!\mathcal{Y}} = ar{G}w_{\!\mathcal{D}} + ar{R}r_{\!\mathcal{P}} + ar{H}\xi_{\!\mathcal{Y}}$$

This can be handled in a direct-type identification method if

- 1. $ar{G}_{ji} = G_{ji}$ for the target module
- 2. \bar{R} is a selection matrix
- 3. There are no confounding variables that affect the estimation of $ar{G}_{ji}$

This can lead to a MIMO predictor model.

Direct method

Resulting predictor model:

There can be common signals in input and output: $w_{\mathcal{Q}}$

^[1] Dankers et al., IEEE Trans. Autom Control, 2016

^[2] Ramaswamy et al., IEEE Trans. Autom Control, 2021

Data informativity (classical definition)

Predictor model: $\hat{w}_{\mathcal{V}}(t,\theta) = W(q,\theta)z(t)$

with
$$z(t) := egin{bmatrix} w_{\mathcal{Y}}(t, heta) &= W\left(q, heta)z(t) \\ w_{\mathcal{D}}(t) \\ v_{\mathcal{P}}(t) \end{bmatrix}$$
 for a model set \mathcal{M} parametrized by $\theta \in \Theta$

Then a data sequence $\{z(t)\}_{t=0,...}$ is informative with respect to \mathcal{M} if for any two models in \mathcal{M} :

$$\left[ar{\mathbb{E}}[(W_1(q){-}W_2(q))z(t)]^2 = 0 \implies W_1(e^{i\omega}) \equiv W_2(e^{i\omega})
ight]$$

A sufficient condition for this is that z is persistently exciting:

$$\Phi_z(\omega)>0$$
 for almost all ω

Spectrum condition - network case

In the situation of our specific predictor model:

$$\Phi_{\kappa}(\omega)>0$$
 for almost all ω

$$\kappa(t) := egin{bmatrix} w_{\mathcal{D}}(t) \ \xi_{\mathcal{Y}}(t) \end{bmatrix}$$

- Note that κ is a filtered version of (r,e)
- with (r, e) persistently exciting

Data informativity (path-based condition)

By exploiting the fact that

$$oldsymbol{\kappa}(t) = F(q) egin{bmatrix} r(t) \ e(t) \end{bmatrix}$$

- p.e. of κ is determined by the row rank of F
- which can be evaluated generically [1],[2] by the number of vertex disjoint paths between inputs and outputs

$$b_{\!\scriptscriptstyle \mathcal{R}
ightarrow \mathcal{W}} = 3$$

we arrive at the **final result**:

Persistence of excitation of κ holds generically if there are

 $|\mathcal{D}|$ vertex disjoint paths between external signals $(r_{\mathcal{P}}, x_{\mathcal{U}})$ and $w_{\mathcal{D}}$

^[1] Van der Woude, 1991

^[2] Hendrickx, Gevers & Bazanella, CDC 2017, TAC 2019.

External signals on original network

Generic data informativity check becomes: $|\mathcal{D}|$ vertex disjoint paths between external signals $(r_{\mathcal{P}}, x_{\mathcal{U}})$ and $w_{\mathcal{D}}$

Signals in $x_{\mathcal{U}}$: All external signals (r,e) that have a direct or unmeasured path to $w_{\mathcal{U}}$

Example

Target: identify G_{21}

Predictor model: $\underbrace{\{w_1\}}_{w_{\mathcal{D}}} o \underbrace{\{w_1,w_2\}}_{w_{\mathcal{V}}}$

2 x 2 noise model accounts for confounding variable

$$w_{\mathcal{Q}} = \{w_1\} \quad w_{\mathcal{U}} = \emptyset \quad x_{\mathcal{U}} = \emptyset$$

H_{11} H_{21} H_{22} V_{1} G_{21} W_{2} G_{12}

Result 1:

Neither r_1 nor r_2 can contribute to $r_p \longrightarrow$ data informativity condition is not satisfied

Result 2: Change predictor model to: $\underbrace{\{w_1, \textcolor{red}{w_2}\}}_{w_{\mathcal{D}}} o \underbrace{\{w_1, w_2\}}_{w_{\mathcal{Y}}}$

Both r_1 and r_2 contribute to $r_{\mathcal{P}} \longrightarrow$ data informativity condition is satisfied

Conclusion

- Data-informativity condition specified for direct identification of single modules in dynamic networks, with given topology
- For satisfying data-informativity generically, path-based conditions can be formulated on the network graph
- Together with the path-based conditions for appropriate predictor model selection, a full set of path-based conditions is formulated for consistent estimation of a single module
- To be used also for external signal allocation (experimental setup)

