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Introduction – dynamic networks 

Decentralized process control
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Autonomous driving

www.envidia.com

Smart power grid

Hydrocarbon reservoirs

Mansoori (2014)

Brain network

P. Hagmann et al. (2008)

Physiological models

Christie, Achenie and Ogunnaike (2014)

PCB testing

T&M Solutions, Romex BV
Betterworldsolutions.eu

Stock market

Materassi and Innocenti, 2010
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Dynamic network setup 
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Assumptions:
• Total of L nodes
• Network is well-posed and stable
• Modules are dynamic LTI, may be unstable
• Disturbances are stationary stochastic and 

can be correlated

[1] J. Gonçalves and S. Warnick, IEEE TAC, 2008.
[2] PVdH et al., Automatica, 2013.

is forward time shift



Dynamic network setup 
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Many data-driven modeling  
questions can be formulated

Measured time series:

• Identification of a local module 
(known topology)

• Identification of the full network
• Topology estimation
• Identifiability
• Sensor and excitation allocation
• Fault detection 
• User prior knowledge of modules
• Distributed identification
• Scalable algorithms
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Single module identification
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For a network with known topology:
Identify        on the basis of 
selected measured signals 

The problem:

Preference for “local” measurements 
and limited excitation



Single module identification
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Naïve approaches: 
• identify based on       and       ; or
• identify based on
do not work, 
e.g. because of parallel paths 
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Naïve approaches: 
• identify based on       and       ; or
• identify based on
do not work, 
e.g. because of parallel paths  
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Approaches to the problem:

1. Prediction error methods 
VdH et al. (2013); Dankers et al. (2015, 2016); Galrinho et al. (2017); Everitt et al. (2018); Gevers et al. (2018);
Bazanella et al. (2017, 2019), Hendrickx et al. (2019), Ramaswamy et al. (2018, 2019, 2020); 

generalizations of closed-loop methods, requiring choice of predictor model 

2. Alternatives
• Non-parametric methods, based on Wiener filters and d-separation

Materassi & Salapaka, (2015,2020) 

• Subspace methods
Yu and Verhaegen, TAC (2018)
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Prediction error methods:

Choice of predictor model, leading to prediction errors:

Direct method:  

Indirect method:  

Generalized method:  

indirect estimation through post-processing

direct estimation of target module   



Single module identification
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Prediction error methods:

Main differences:

Direct method:  

Indirect method:  

Predictor inputs             receive excitation from both     and     signals   

Predictor inputs             receive excitation from     signals only

Overall: indirect methods have stronger requirements on the presence of 
measurable external excitation signals     more expensive experiments
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Multi-input single-output identification problem
to be addressed by a closed-loop identification 
method
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How to choose predictor inputs and outputs?
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[1] Gevers et al., SYSID 2018;  Hendrickx et al, TAC 2019; Bazanella et al., CDC 2019

- Select output        and all its in-neighbors
as predictor output;       as predictor input

- Estimate         and         consistently, and
determine:

[1]

- or through IV or two-stage method[2]

- freedom in location of r-signals
(e.g. directly on        )

- dual (outneighbour) setup is also possible[1]

- we do not necessarily need all in-neighbors
to be included in       

[2] VdHof et al., Automatica 2013; Dankers et al., Automatica 2015

MISO identification problem
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How to choose predictor inputs and outputs?
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[1] Dankers et al., IEEE-TAC, 2016

Selection of signals in       :

• Parallel path and loop condition

All parallel paths, and loops around the output, 
should pass through a signal in 
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Indirect methods
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• Parallel path and loop condition results from theory of immersion[1]: 
removing node signals, while retaining the behaviour of the remaining nodes 

[1] Dankers et al., IEEE-TAC, 2016; F. Dörfler and F. Bullo, 2013

With network abstractions[2] this can further be generalized:

w1 w2

wp
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0
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Measuring descendants of the 
requested nodes instead

[2] Linder and Enqvist, 2017; Weerts, Linder et al., Automatica, July 2020
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• Relatively simple methods for consistent estimation of target module

• High requirements on presence of excitation signals  

leading to  “expensive” experiments

No use of excitation through disturbance signals

As alternative: direct method
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- Estimate transfer                       and model
the disturbance process on the output.

- consistent estimate and ML properties
- provided there is enough excitation,

through external signals     and  

- input signal set        can be further reduced[1]

Direct method

[1] Dankers et al., IEEE-TAC, 2016; Dankers et al., IFAC 2017
24

If: • signals are correlated, i.e.              non-diagonal, or 
• some in-neighbors of         are not included in   

Then confounding variables can occur, destroying the consistency results

Additional problem:
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Direct method

Confounding variable [1][2]: 
Unmeasured signal that has (unmeasured paths) to both the 
input and output of an estimation problem. 

25

[1] J. Pearl, Stat. Surveys, 3, 96-146, 2009
[2] A.G. Dankers et al., Proc. IFAC World Congress, 2017.
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wc

G21
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0

0

Can be addressed in two ways[3]:
• by adding an additional node signal to       , and blocking an unmeasured path;

[3] PVdH et al, CDC 2019; Ramaswamy et al., 2020

Resulting predictor model can become a MIMO model

OR
• by adding the affected signal in        to        and model the correlated disturbances  



Direct method

26

Example of confounding variable handling:
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Non-measurable       is a confounding variable

Two possible solutions:

add predictor output2. Predict too  

1. Include add predictor input 

[1] D. Materassi and M.V. Salapaka, CDC 2015, TAC 2020.

Relation with d-separation in graphs (Materassi & Salapaka)[1]



Direct method - Algorithm for signal selection

1. Select                    and  
2. Add node signals to       to satisfy the parallel path and loop condition
3. Extend         and / or        so as to avoid confounding variables

27

For estimating target module        : 

Algorithm always reaches a convergence point where conditions are satisfied. 

The choice options lead to different end-results for signals to be included
different predictor models



Direct method
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General setup: 

Target module

Different predictor models:   

• Full input case : include all in-neighbors of
• Minimum node signals case : maximize number of outputs
• User selection case : dedicated choice based on measurable nodes  



Consistency result
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Conditions for consistent (and ML) estimation 
of         [1]: 

• System in the model set, 
• Parallel path and loop condition satisfied
• Confounding variables handled appropriately
• Persistence of excitation, i.e.                       at a sufficient number of frequencies, with

and       the innovation process of 

(can also be phrased as path-based condition[2])

[1] K.R. Ramaswamy et al., ArXiv 2019, IEEE-TAC, provis accepted.
[2] VdH et al., CDC-2020 submitted

• Requirements on signals    increase with increasing number of outputs
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[1] A. Dankers et al., TAC 2016.

[1]
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[2] M. Gevers, et al., SYSID 2018.
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 What can we do if parallel path/loop conditions cannot be satisfied?

Example - direct method & indirect method

 What can we do if certain nodes cannot be excited?

We combine the ideas of direct and indirect methods to increase flexibility



 Include both internal nodes and external excitation as predictor inputs

Example - direct method & indirect method

 Instead of measuring a parallel path we excite it and measure a descendant

[1] K.R. Ramaswamy et al., CDC 2019

 Generalized method increases flexibility in selecting sensors/actuators

[1]
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Machine learning in local module identification

• MISO/MIMO identification with all modules parameterized
• Brings in some major computational complexity

• We need only the target module. No NUISANCE!

35
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Machine learning in local module identification
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[1] Ramaswamy et al., CDC 2018.

Maximize marginal likelihood of output data:   𝜂̂𝜂 = argmax
𝜂𝜂

𝑝𝑝 𝑤𝑤𝑗𝑗; 𝜂𝜂
𝜂𝜂 ≔ 𝜃𝜃 𝜆𝜆𝑗𝑗 𝜆𝜆𝑘𝑘1 … 𝜆𝜆𝑘𝑘𝑝𝑝 𝛽𝛽𝑗𝑗 𝛽𝛽𝑘𝑘1 … 𝛽𝛽𝑘𝑘𝑝𝑝 𝜎𝜎𝑗𝑗2

⊤

• smaller no. of 
parameters

• simpler model order 
selection

• scalable
• simpler optimization 

problems to estimate 
parameters



Model order reduction Steiglitz McBride (MORSM)   :
• Step 1: Estimate a high-order ARX model using least squares
• Step 2: Apply SM to the simulated output and filtered input obtained from the estimates
• No non-convex optimization problems involved to get the parametric model

Algorithms for multi-stage methods

Two stage method – Empirical Bayes   :
• Incorporate Gaussian process modeling and 

TC kernels in indirect identification
• Situation handled of sensor noise only

37
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[2] Galrinho et al., IFAC 2017.
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Network identifiability for a single module 

blue = unknown
red   = known

39

Can one particular target module         be distinguished in network models
on the basis of (selected) measured signals w , r ?



Single module identifiability

40

Consider a network model set:

Based on a subset of measured node signals: 

and the power spectral density of   

Identification algorithms typically can uniquely estimate from :  

with



Single module identifiability 
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Definition
A module        is network identifiable from in a model set        at 
if for all models                         :

[1] Weerts et al., SYSID2015; Automatica, 2018; CDC 2018 
[2] Bazanella et al., CDC 2017; Hendrickx et al., IEEE-TAC, 2019.; Weerts et al., CDC 2018 

It is globally[1] network identifiable if this holds for all 
It is generically[2] network identifiable if this holds for almost all



Single module identifiability
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• Global identifiability: dependent on rank conditions

• Generic identifiability: path-based conditions on the network graph [1],[2] 

Generic rank = number of vertex-disjoint paths

[1] Van der Woude, 1991
[2] Hendrickx, Gevers & Bazanella, CDC 2017, TAC 2019



Single module identifiability

43

Aspects / situations to be distinguished:

• Partial or full node measurements

• Partial or full external excitation through :

• When discarding the spectrum equality[1]: 

one only exploits excitation from     rather than from            : cf. indirect/direct method

[1] Bazanella et al., CDC 2017; Hendrickx et al., IEEE-TAC, 2019. 



Single module identifiability
Particular result: full measurement,  partial excitation through    [1]:

44

For generic identifiability of target module: 
• Measure all node signals in the network
• Excite a number of ascendants of the in-neighbours of        such that  

[1] Hendrickx, Gevers & Bazanella, CDC 2017, SYSID 2018, TAC 2019
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Single module identifiability
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                                                    Excitation conditions
r r,e e

Measurement / excitation setup

Full measurement - partial excitation Hendrickx et al. (TAC, 2019) - generic 
Weerts et al. (Autom 2018) - global                    
Weerts et al. (CDC, 2018) - global, generic             
Shi et al. (IFAC, 2020) - generic

--

Full excitation - partial measurement
Bazanella et al. (CDC, 2017) - generic 
Hendrickx et al. (TAC, 2019) - generic      
van Waarde et al., (POL, 2018) - global

-- Materassi & Salapaka (CDC, 2015)

Partial excitation - partial measurement Bazanella et al. (CDC, 2019) - generic 

Analysis through identification methods:              
VdHof et al. (Autom 2013) - global                         
Ramaswamy et al. (TAC prov accep 2020) - global              
Ramaswamy et al. (CDC 2019) - global

--

Conditions for consistent module estimates (indirect/direct/generalized) 
act as sufficient conditions for single module identifiability
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Extensions - Summary



Extensions

• Optimal experiment design, when excitation signal locations have been chosen
Gevers et al., 2015; Bombois et al., 2018; Morelli et al., 2019; 

47

• Handling of sensor noise, leading to errors-in-variables problems
Dankers et al., 2015; 

• Variance aspects of estimation in structured models
Wahlberg et al., 2009; Günes et al., 2014; Everitt et al., 2013, 2017; 



Summary

• Path-based conditions for consistent identification

• Degrees of freedom in selection of location for sensing/actuation

• Algorithms that avoid large scale non-convex optimization

• Important aspect: effectively using disturbances for exciting the network

related to choice of indirect / direct / generalized method

• A priori known modules can be accounted for

48
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