

Introduction – dynamic networks

Decentralized process control

Smart power grid

Betterworldsolutions.eu

Stock market

Materassi and Innocenti, 2010

PCB testing

T&M Solutions, Romex BV

Autonomous driving

Brain network

P. Hagmann et al. (2008)

Hydrocarbon reservoirs

Mansoori (2014)

Physiological models

Christie, Achenie and Ogunnaike (2014)

Assumptions:

- Total of L nodes
- Network is well-posed and stable
- Modules are dynamic LTI, may be unstable
- Disturbances are stationary stochastic and can be correlated

$$\begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_L \end{bmatrix} = \begin{bmatrix} 0 & G_{12}^0 & \cdots & G_{1L}^0 \\ G_{21}^0 & 0 & \cdots & G_{2L}^0 \\ \vdots & \ddots & \ddots & \vdots \\ G_{L1}^0 & G_{L2}^0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_L \end{bmatrix} + R^0 \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_K \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_L \end{bmatrix}$$

$$G^0(q) \qquad q \text{ is forward time shift}$$

 $w(t) = G^0(q)w(t) + R^0(q)r(t) + v(t) \hspace{1cm} v(t) = H^0(q)e(t)$

^[2] PVdH et al., Automatica, 2013.

Measured time series:

$$\{w_i(t)\}_{i=1,\dots L};\ \{r_j(t)\}_{j=1,\dots K}$$

Many data-driven modeling questions can be formulated

- Identification of a local module (known topology)
- Identification of the full network
- Topology estimation
- Identifiability
- Sensor and excitation allocation
- Fault detection
- User prior knowledge of modules
- Distributed identification
- Scalable algorithms

Contents

- Introduction and network model
- Single module identification: what's the problem?
- Indirect methods
- Direct methods
- Algorithmic aspects
- Single module identifiability
- Conclusions

The problem:

For a network with known topology: Identify G_{21}^0 on the basis of selected measured signals (w, r)

Preference for "local" measurements and limited excitation

Naïve approaches:

- ullet identify based on w_2 and w_1 ; or
- identify based on $T_{w_2r_1}T_{w_1r_1}^{-1}$ do not work,
- e.g. because of parallel paths

Naïve approaches:

- ullet identify based on w_2 and w_1 ; or
- identify based on $T_{w_2r_1}T_{w_1r_1}^{-1}$ do not work,
- e.g. because of parallel paths

Approaches to the problem:

1. Prediction error methods

VdH et al. (2013); Dankers et al. (2015, 2016); Galrinho et al. (2017); Everitt et al. (2018); Gevers et al. (2018); Bazanella et al. (2017, 2019), Hendrickx et al. (2019), Ramaswamy et al. (2018, 2019, 2020);

generalizations of closed-loop methods, requiring choice of predictor model

2. Alternatives

- Non-parametric methods, based on Wiener filters and d-separation Materassi & Salapaka, (2015,2020)
- Subspace methods
 Yu and Verhaegen, TAC (2018)

Prediction error methods:

Choice of predictor model, leading to prediction errors:

Direct method:
$$\varepsilon(t,\theta) = \bar{H}(q,\theta)^{-1}[w_{\mathcal{Y}}(t) - \bar{G}(q,\theta)w_{\mathcal{D}}(t)]$$

direct estimation of target module

Indirect method:
$$\varepsilon(t,\theta) = \bar{H}(q,\theta)^{-1}[w_{\mathcal{Y}}(t) - \bar{T}(q,\theta)r_{\mathcal{D}}(t)]$$

indirect estimation through post-processing

Generalized method: $\varepsilon(t,\theta) = \bar{H}(q,\theta)^{-1}[w_{\mathcal{Y}}(t) - \bar{G}(q,\theta)w_{\mathcal{D}_{w}}(t) - \bar{T}(q,\theta)r_{\mathcal{D}_{r}}(t)]$

Prediction error methods:

Main differences:

Direct method:
$$\varepsilon(t,\theta) = \bar{H}(q,\theta)^{-1}[w_{\mathcal{Y}}(t) - \bar{G}(q,\theta)w_{\mathcal{D}}(t)]$$

Predictor inputs $w_{\mathcal{D}}(t)$ receive excitation from both r and e signals

Indirect method:
$$\varepsilon(t,\theta) = \bar{H}(q,\theta)^{-1}[w_{\mathcal{Y}}(t) - \bar{T}(q,\theta)r_{\mathcal{D}}(t)]$$

Predictor inputs $r_{\mathcal{D}}(t)$ receive excitation from r signals only

Overall: indirect methods have stronger requirements on the presence of measurable external excitation signals $r \rightarrow$ more expensive experiments

Contents

- Introduction and network model
- Single module identification: what's the problem?
- Indirect methods
- Direct methods
- Algorithmic aspects
- Single module identifiability
- Conclusions

Multi-input single-output identification problem

to be addressed by a closed-loop identification method

How to choose predictor inputs and outputs?

MISO identification problem

- Select output w_j and all its in-neighbors $w_{\mathcal{N}}$ as predictor output; $r_{\mathcal{D}}$ as predictor input
- Estimate $ar{T}_{\!\mathcal{N}r}$ and $ar{T}_{\!jr}$ consistently, and determine:

$$\hat{G}_{j\mathcal{N}}=\hat{T}_{jr}\hat{T}_{\mathcal{N}r}^{-1}$$
 [1

- or through IV or two-stage method^[2]
- freedom in location of r-signals (e.g. directly on $w_{\mathcal{N}}$)
- dual (outneighbour) setup is also possible^[1]
- we do not necessarily need all in-neighbors to be included in $w_{\!\mathcal{N}}$

^[1] Gevers et al., SYSID 2018; Hendrickx et al, TAC 2019; Bazanella et al., CDC 2019

How to choose predictor inputs and outputs?

Selection of signals in $w_{\mathcal{V}}$:

Parallel path and loop condition

All parallel paths, and loops around the output, should pass through a signal in $w_{\mathcal{Y}}$

Parallel path and loop condition results from theory of immersion^[1]:
removing node signals, while retaining the behaviour of the remaining nodes

With network **abstractions**^[2] this can further be generalized:

Measuring descendants of the requested nodes instead

^[1] Dankers et al., IEEE-TAC, 2016; F. Dörfler and F. Bullo, 2013

- Relatively simple methods for **consistent estimation** of target module
- $oldsymbol{\cdot}$ High requirements on presence of excitation signals $oldsymbol{r}$ leading to "expensive" experiments No use of excitation through disturbance signals

As alternative: direct method

Contents

- Introduction and network model
- Single module identification: what's the problem?
- Indirect methods
- Direct methods
- Algorithmic aspects
- Single module identifiability
- Conclusions

$$\varepsilon(t,\theta) = \bar{H}(q,\theta)^{-1} [w_{\mathcal{Y}}(t) - \bar{G}(q,\theta) w_{\mathcal{D}}(t)]$$

- Estimate transfer $w_D \rightarrow w_V$ and model the disturbance process on the output.
- consistent estimate and ML properties
- provided there is enough excitation,
 through external signals r and e
- input signal set $w_{\mathcal{D}}$ can be further reduced $^{[1]}$

Additional problem:

- If: $oldsymbol{\cdot}$ v signals are correlated, i.e. $\Phi_v(\omega)$ non-diagonal, or
 - some in-neighbors of $w_{\mathcal{Y}}$ are not included in $w_{\mathcal{D}}$

Then confounding variables can occur, destroying the consistency results

Confounding variable [1][2]:

Unmeasured signal that has (unmeasured paths) to both the input and output of an estimation problem.

Can be addressed in two ways^[3]:

- by adding an additional node signal to $w_{\mathcal{D}}$, and blocking an unmeasured path; OR
- by adding the affected signal in w_D to w_V and model the correlated disturbances

Resulting predictor model can become a MIMO model

Example of confounding variable handling:

Non-measurable w_7 is a confounding variable

Two possible solutions:

- 1. Include w_4 \longrightarrow add predictor input $w_{\mathcal{D}} = \{w_1, w_3, \textcolor{red}{w_4}, w_6\}$ $w_{\mathcal{Y}} = \{w_2\}$
- 2. Predict w_1 too \longrightarrow add predictor output $w_{\mathcal{D}} = \{w_1, w_3, w_6\}$ $w_{\mathcal{Y}} = \{w_1, w_2\}$

Relation with d-separation in graphs (Materassi & Salapaka)^[1]

Direct method - Algorithm for signal selection

For estimating target module G_{ji} :

- 1. Select $w_{\scriptscriptstyle \mathcal{D}} = w_i$ and $w_{\scriptscriptstyle \mathcal{Y}} = w_j$
- 2. Add node signals to $w_{\mathcal{D}}$ to satisfy the parallel path and loop condition
- 3. Extend $w_{\mathcal{D}}$ and / or $w_{\mathcal{Y}}$ so as to avoid confounding variables

Algorithm always reaches a convergence point where conditions are satisfied.

The choice options lead to different end-results for signals to be included different predictor models

General setup:

Different predictor models:

• Full input case : include all in-neighbors of $w_{\!\scriptscriptstyle \mathcal{Y}}$

• Minimum node signals case : maximize number of outputs

• User selection case : dedicated choice based on measurable nodes

Consistency result

Conditions for consistent (and ML) estimation of $G_{ii}^{[1]}$:

- System in the model set,
- Parallel path and loop condition satisfied
- Confounding variables handled appropriately
- Persistence of excitation, i.e. $\Phi_{\kappa}(\omega)>0$ at a sufficient number of frequencies, with

$$\kappa = egin{bmatrix} w_{\mathcal{D}} \ \xi_{\mathcal{Q}} \ w_0 \end{bmatrix}$$
 and $\xi_{\mathcal{Q}}$ the innovation process of $w_{\mathcal{Q}}$

(can also be phrased as path-based condition^[2])

Requirements on signals r increase with increasing number of outputs

^[1] K.R. Ramaswamy et al., ArXiv 2019, IEEE-TAC, provis accepted.

$$egin{array}{ccc} oldsymbol{w_{\mathcal{D}}} & oldsymbol{w_{\mathcal{Y}}} \ \{w_1,w_3,w_5\}
ightarrow \{w_2\} \ \hline Direct\ method\ ^{[1]} \ \end{array}$$

[2] M. Gevers, et al., SYSID 2018.

$$\underbrace{\{w_1, w_3, w_5\}
ightarrow \{w_2\}}_{Direct\ method}$$

$$\underbrace{\{r_1,r_3,r_5\}
ightarrow \{w_1,w_2,w_3,w_5\}}_{Indirect\ method}$$

- What can we do if parallel path/loop conditions cannot be satisfied?
- What can we do if certain nodes cannot be excited?

We combine the ideas of direct and indirect methods to increase flexibility

$$egin{aligned} \{w_1, oldsymbol{w_3}, oldsymbol{w_5}\} &
ightarrow \{w_1, oldsymbol{w_2}, oldsymbol{w_1}, oldsymbol{w_2}, oldsymbol{w_3}, oldsymbol{w_5}\} \ & Indirect \ method \ &\{w_1, w_4, r_2, r_3\} &
ightarrow \{w_2, w_4\} \ &Generalized \ method \ \end{bmatrix}$$

- Include both internal nodes and external excitation as predictor inputs
- Instead of measuring a parallel path we excite it and measure a descendant
- Generalized method increases flexibility in selecting sensors/actuators

Contents

- Introduction and network model
- Single module identification: what's the problem?
- Indirect methods
- Direct methods
- Algorithmic aspects
- Single module identifiability
- Conclusions

Machine learning in local module identification

- MISO/MIMO identification with all modules parameterized
- Brings in some major computational complexity
- We need only the target module. No NUISANCE!

Machine learning in local module identification

Maximize marginal likelihood of output data: $\hat{\eta} = \underset{n}{\operatorname{argmax}} p(w_j; \eta)$

$$\eta \coloneqq \begin{bmatrix} \theta & \lambda_j & \lambda_{k_1} & \dots & \lambda_{k_p} & \beta_j & \beta_{k_1} & \dots & \beta_{k_p} & \sigma_j^2 \end{bmatrix}^\mathsf{T}$$

- smaller no. of parameters
- simpler model order selection
- scalable
- simpler optimization problems to estimate parameters

Algorithms for multi-stage methods

Two stage method – Empirical Bayes [1]:

- Incorporate Gaussian process modeling and TC kernels in indirect identification
- Situation handled of sensor noise only

Model order reduction Steiglitz McBride (MORSM)^[2]:

- Step 1: Estimate a high-order ARX model using least squares
- Step 2: Apply SM to the simulated output and filtered input obtained from the estimates
- No non-convex optimization problems involved to get the parametric model

^[1] Everitt et al., Automatica 2018.

Contents

- Introduction and network model
- Single module identification: what's the problem?
- Indirect methods
- Direct methods
- Algorithmic aspects
- Single module identifiability
- Conclusions

Network identifiability for a single module

blue = unknown red = known

Can **one particular target** module G_{ji} be **distinguished** in network models on the basis of (selected) measured signals w, r?

Consider a network model set: $\mathcal{M} = \{(G(heta), R, H(heta))\}_{ heta \in \Theta}$

Based on a subset of measured node signals: $w_m = Cw$ Identification algorithms typically can uniquely estimate from (w_m,r) :

$$\left| \left. T_{w_m r}
ight.$$
 and $\left. \Phi_{ar{v}_m}
ight|$

with
$$w_m = \frac{T_{w_m r} r}{r} + \bar{v}_m$$

and $\Phi_{ar{v}_m}$ the power spectral density of $ar{v}_m$

Definition

A module G_{ji} is network identifiable from (w_m,r) in a model set \mathcal{M} at $M_0=M(\theta_0)$ if for all models $M(\theta_1)\in\mathcal{M}$:

$$\left\{egin{aligned} T_{w_m r}(q, heta_1) &= T_{w_m r}(q, heta_0) \ \Phi_{ar{v}_m}(\omega, heta_1) &= \Phi_{ar{v}_m}(\omega, heta_0) \end{aligned}
ight\} \Longrightarrow G_{ji}(heta_1) = G_{ji}(heta_0)$$

It is ${f globally}^{[1]}$ network identifiable if this holds for ${f all}\ M(\theta_0)\in {\cal M}$ It is ${f generically}^{[2]}$ network identifiable if this holds for ${f almost\ all\ }M(\theta_0)\in {\cal M}$

- Global identifiability: dependent on rank conditions
- Generic identifiability: path-based conditions on the network graph [1],[2]

Generic rank = number of vertex-disjoint paths

$$b_{R \to W} = 3$$

Aspects / situations to be distinguished:

- Partial or full node measurements $w_m=w$
- Partial or full external excitation through r: R=I
- When discarding the spectrum equality^[1]:

$$\left. \begin{array}{l} T_{w_m r}(q, \theta_1) = T_{w_m r}(q, \theta_0) \\ \hline \Phi_{v_m}(\omega, \theta_1) = \Phi_{v_m}(\omega, \theta_0) \end{array} \right\} \Longrightarrow G_{ji}(\theta_1) = G_{ji}(\theta_0)$$

one only exploits excitation from r rather than from (r, e): cf. indirect/direct method

Particular result: full measurement, partial excitation through r [1]:

For **generic** identifiability of target module:

- Measure all node signals in the network
- Excite a number of ascendants of the in-neighbours of w_j such that

$$b_{ extsf{R}
ightarrow \, \mathcal{N}} = b_{ extsf{R}
ightarrow \, \mathcal{N}\setminus\{w_i\}} + 1$$

	Excitation conditions		
	r	r,e	е
Measurement / excitation setup			
Full measurement - partial excitation	Hendrickx et al. (TAC, 2019) - generic	Weerts et al. (Autom 2018) - global Weerts et al. (CDC, 2018) - global, generic Shi et al. (IFAC, 2020) - generic	
Full excitation - partial measurement	Bazanella et al. (CDC, 2017) - generic Hendrickx et al. (TAC, 2019) - generic van Waarde et al., (POL, 2018) - global		Materassi & Salapaka (CDC, 2015)
Partial excitation - partial measurement	Bazanella et al. (CDC, 2019) - generic	Analysis through identification methods: VdHof et al. (Autom 2013) - global Ramaswamy et al. (TAC prov accep 2020) - global Ramaswamy et al. (CDC 2019) - global	

Conditions for consistent module estimates (indirect/direct/generalized) act as sufficient conditions for single module identifiability

Extensions - Summary

Extensions

- Optimal experiment design, when excitation signal locations have been chosen Gevers et al., 2015; Bombois et al., 2018; Morelli et al., 2019;
- Handling of sensor noise, leading to errors-in-variables problems
 Dankers et al., 2015;
- Variance aspects of estimation in structured models Wahlberg et al., 2009; Günes et al., 2014; Everitt et al., 2013, 2017;

Summary

- Path-based conditions for consistent identification
- Degrees of freedom in selection of location for sensing/actuation
- Algorithms that avoid large scale non-convex optimization
- Important aspect: effectively using disturbances for exciting the network
 related to choice of indirect / direct / generalized method
- A priori known modules can be accounted for

Acknowledgements

Research team:

SYSTEM ID ORKS DANKERS

Arne Dankers

Harm Weerts

Giulio Bottegal Xiaodong Cheng

Shengling Shi Mannes Dreef

Lizan Kivits

Tom Steentjes

Mircea Lazar

Tijs Donkers

Jobert Ludlage

Co-authors, contributors and discussion partners:

Xavier Bombois, Peter Heuberger, Donatello Materassi, Manfred Deistler, Michel Gevers, Jonas Linder, Sean Warnick, Alessandro Chiuso, Hakan Hjalmarsson, Miguel Galrinho, Martin Enqvist, Johan Schoukens

