Single module identification in dynamic networks – the current status

Paul Van den Hof, Karthik Ramaswamy

21st IFAC World Congress, 12-17 July 2020, Berlin, Germany

Open invited track: “Data-driven modeling and learning in dynamic networks”

www.sysdynet.eu
www.pvandenhof.nl
p.m.j.vandenhof@tue.nl
Introduction – dynamic networks

Decentralized process control

Smart power grid

Stock market

PCB testing

Autonomous driving

Brain network

Hydrocarbon reservoirs

Physiological models

www.envidia.com

www.envidia.com

P. Hagmann et al. (2008)

Mansoori (2014)

Christie, Achenie and Oggunnaike (2014)

Materassi and Innocenti, 2010

T&M Solutions, Romex BV

Betterworldsolutions.eu

Mansoori (2014)

Christie, Achenie and Oggunnaike (2014)

www.envidia.com

P. Hagmann et al. (2008)

Mansoori (2014)

Christie, Achenie and Oggunnaike (2014)

www.envidia.com

P. Hagmann et al. (2008)

Mansoori (2014)

Christie, Achenie and Oggunnaike (2014)

www.envidia.com

P. Hagmann et al. (2008)

Mansoori (2014)

Christie, Achenie and Oggunnaike (2014)

www.envidia.com

P. Hagmann et al. (2008)

Mansoori (2014)

Christie, Achenie and Oggunnaike (2014)
Dynamic network setup

- G_{76} module
- w_i node signal
- r_i external excitation
- v_i process noise
Dynamic network setup

- G_{76} module
- w_i node signal
- r_i external excitation
- v_i process noise
Dynamic network setup

- \(v_i \): node signal
- \(r_i \): external excitation
- \(v_i \): process noise
Dynamic network setup

- v_i: process noise
- w_i: node signal
- r_i: external excitation
- G_{ij}: module
Dynamic network setup

G_{76} module

w_i node signal

r_i external excitation

v_i process noise
Dynamic network setup

Assumptions:

- Total of \(L \) nodes
- Network is well-posed and stable
- Modules are dynamic LTI, may be unstable
- Disturbances are stationary stochastic and can be correlated

\[
\begin{bmatrix}
 w_1 \\
 w_2 \\
 \vdots \\
 w_L
\end{bmatrix} =
\begin{bmatrix}
 0 & G_{12}^0 & \cdots & G_{1L}^0 \\
 G_{21}^0 & 0 & \cdots & G_{2L}^0 \\
 \vdots & \vdots & \ddots & \vdots \\
 G_{L1}^0 & G_{L2}^0 & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
 w_1 \\
 w_2 \\
 \vdots \\
 w_L
\end{bmatrix} + R^0
\begin{bmatrix}
 r_1 \\
 r_2 \\
 \vdots \\
 r_K
\end{bmatrix} +
\begin{bmatrix}
 v_1 \\
 v_2 \\
 \vdots \\
 v_L
\end{bmatrix}
\]

\(w(t) = G^0(q)w(t) + R^0(q)r(t) + v(t) \)

\(v(t) = H^0(q)e(t) \)

Many data-driven modeling questions can be formulated

- Identification of a local module (known topology)
- Identification of the full network
- Topology estimation
- Identifiability
- Sensor and excitation allocation
- Fault detection
- User prior knowledge of modules
- Distributed identification
- Scalable algorithms

Measured time series:
\[\{w_i(t)\}_{i=1,\ldots,L}; \quad \{r_j(t)\}_{j=1,\ldots,K} \]
Contents

• Introduction and network model
• Single module identification: what’s the problem?
• Indirect methods
• Direct methods
• Algorithmic aspects
• Single module identifiability
• Conclusions
Single module identification

The problem:
For a network with known topology:
Identify G_{21}^0 on the basis of selected measured signals (w, r)

Preference for “local” measurements and limited excitation
Single module identification

Naïve approaches:
• identify based on w_2 and w_1; or
• identify based on $T_{w_2r_1}T_{w_1r_1}^{-1}$ do not work,
e.g. because of parallel paths
Naïve approaches:
• identify based on w_2 and w_1; or
• identify based on $T_{w_2r_1}T_{w_1r_1}^{-1}$
do not work,
e.g. because of parallel paths
Single module identification

Approaches to the problem:

1. **Prediction error methods**
 VdH et al. (2013); Dankers et al. (2015, 2016); Galrinho et al. (2017); Everitt et al. (2018); Gevers et al. (2018); Bazanella et al. (2017, 2019), Hendrickx et al. (2019), Ramaswamy et al. (2018, 2019, 2020);
 generalizations of closed-loop methods, requiring choice of predictor model

2. **Alternatives**
 • Non-parametric methods, based on Wiener filters and d-separation
 Materassi & Salapaka, (2015,2020)
 • Subspace methods
 Yu and Verhaegen, TAC (2018)
Single module identification

Prediction error methods:

Choice of predictor model, leading to prediction errors:

Direct method: \[\varepsilon(t, \theta) = \tilde{H}(q, \theta)^{-1}[w_Y(t) - \tilde{G}(q, \theta)w_D(t)] \]

direct estimation of target module

Indirect method: \[\varepsilon(t, \theta) = \tilde{H}(q, \theta)^{-1}[w_Y(t) - \tilde{T}(q, \theta)r_D(t)] \]

indirect estimation through post-processing

Generalized method: \[\varepsilon(t, \theta) = \tilde{H}(q, \theta)^{-1}[w_Y(t) - \tilde{G}(q, \theta)w_{D,w}(t) - \tilde{T}(q, \theta)r_{D,r}(t)] \]
Single module identification

Prediction error methods:

Main differences:

Direct method: \(\varepsilon(t, \theta) = \tilde{H}(q, \theta)^{-1}[w_Y(t) - \tilde{G}(q, \theta)w_D(t)] \)

Predictor inputs \(w_D(t) \) receive excitation from both \(r \) and \(e \) signals

Indirect method: \(\varepsilon(t, \theta) = \tilde{H}(q, \theta)^{-1}[w_Y(t) - \tilde{T}(q, \theta)r_D(t)] \)

Predictor inputs \(r_D(t) \) receive excitation from \(r \) signals only

Overall: indirect methods have stronger requirements on the presence of measurable external excitation signals \(r \) \(\rightarrow \) more expensive experiments
Contents

• Introduction and network model
• Single module identification: what’s the problem?
• Indirect methods
• Direct methods
• Algorithmic aspects
• Single module identifiability
• Conclusions
Single module identification

Multi-input single-output identification problem to be addressed by a closed-loop identification method
Indirect methods

How to choose predictor inputs and outputs?

- Select output w_j and all its in-neighbors w_N as predictor output; r_D as predictor input.
- Estimate \hat{T}_{N_r} and \hat{T}_{j_r} consistently, and determine:
 $$\hat{G}_{jN} = \hat{T}_{j_r} \hat{T}_{N_r}^{-1}$$ \[1\]
- or through IV or two-stage method\[2\]
- freedom in location of r-signals (e.g. directly on w_N)
- dual (outneighbour) setup is also possible\[1\]
- we do not necessarily need all in-neighbors to be included in w_N

[1] Gevers et al., SYSID 2018; Hendrickx et al, TAC 2019; Bazanella et al., CDC 2019
[2] VdHof et al., Automatica 2013; Dankers et al., Automatica 2015
Indirect methods

How to choose predictor inputs and outputs?

Selection of signals in w_Y:

- Parallel path and loop condition

All parallel paths, and loops around the output, should pass through a signal in w_Y

Indirect methods

- Parallel path and loop condition results from theory of immersion\(^1\): removing node signals, while retaining the behaviour of the remaining nodes

With network abstractions\(^2\) this can further be generalized:

Measuring descendants of the requested nodes instead

\(^1\) Dankers et al., IEEE-TAC, 2016; F. Dörfler and F. Bullo, 2013

\(^2\) Linder and Enqvist, 2017; Weerts, Linder et al., Automatica, July 2020
Indirect methods

• Relatively simple methods for **consistent estimation** of target module

• High requirements on presence of excitation signals \(r \)
 leading to “expensive” experiments

 No use of excitation through disturbance signals

As alternative: **direct method**
Contents

• Introduction and network model
• Single module identification: what’s the problem?
• Indirect methods
• Direct methods
• Algorithmic aspects
• Single module identifiability
• Conclusions
Direct method

- Estimate transfer $w_D \rightarrow w_Y$ and model the disturbance process on the output.
- Consistent estimate and ML properties
- Provided there is enough excitation, through external signals r and e
- Input signal set w_D can be further reduced\[1\]

Additional problem:

If:
• v signals are correlated, i.e. $\Phi_v(\omega)$ non-diagonal, or
 • some in-neighbors of w_Y are not included in w_D

Then confounding variables can occur, destroying the consistency results

$\varepsilon(t, \theta) = \bar{H}(q, \theta)^{-1}[w_Y(t) - \bar{G}(q, \theta)w_D(t)]$

[1] Dankers et al., IEEE-TAC, 2016; Dankers et al., IFAC 2017
Direct method

Confounder variable \(^{(1)}^{[1]}^{[2]}\): Unmeasured signal that has (unmeasured paths) to both the input and output of an estimation problem.

Can be addressed in two ways\(^{[3]}\):
- by adding an additional node signal to \(w_D\), and blocking an unmeasured path; OR
- by adding the affected signal in \(w_D\) to \(w_Y\) and model the correlated disturbances

Resulting predictor model can become a MIMO model

\(^{[2]}\) A.G. Dankers et al., *Proc. IFAC World Congress*, 2017.
\(^{[3]}\) PVdH et al, CDC 2019; Ramaswamy et al., 2020
Direct method

Example of confounding variable handling:

Non-measurable w_7 is a confounding variable

Two possible solutions:

1. Include w_4 → add predictor input

 \[w_D = \{ w_1, w_3, w_4, w_6 \} \quad w_Y = \{ w_2 \} \]

2. Predict w_1 too → add predictor output

 \[w_D = \{ w_1, w_3, w_6 \} \quad w_Y = \{ w_1, w_2 \} \]

Relation with d-separation in graphs (Materassi & Salapaka)[1]

Direct method - Algorithm for signal selection

For estimating target module G_{ji}:

1. Select $w_D = w_i$ and $w_Y = w_j$
2. Add node signals to w_D to satisfy the parallel path and loop condition
3. Extend w_D and/or w_Y so as to avoid confounding variables

Algorithm always reaches a convergence point where conditions are satisfied.

The choice options lead to different end-results for signals to be included
 different predictor models
Direct method

General setup:

Different predictor models:

- Full input case: include all in-neighbors of w_y
- Minimum node signals case: maximize number of outputs
- User selection case: dedicated choice based on measurable nodes
Consistency result

Conditions for consistent (and ML) estimation of G_{ji}[1]:

- System in the model set,
- Parallel path and loop condition satisfied
- Confounding variables handled appropriately
- Persistence of excitation, i.e. $\Phi_\kappa(\omega) > 0$ at a sufficient number of frequencies, with

$$
\kappa = \begin{bmatrix} w_D \\ \xi_Q \\ w_0 \end{bmatrix}
$$

and ξ_Q the innovation process of w_Q

(can also be phrased as path-based condition[2])

- Requirements on signals r increase with increasing number of outputs

\[1\] K.R. Ramaswamy et al., ArXiv 2019, IEEE-TAC, provis accepted.

\[2\] VdH et al., CDC-2020 submitted
Example - direct method & indirect method

\[\{w_1, w_3, w_5\} \rightarrow \{w_2\} \]

Direct method [1]

Example - direct method & indirect method

\[\{w_1, w_3, w_5\} \rightarrow \{w_2\} \]

Direct method \([1]\)

\[\{r_1, r_3, r_5\} \rightarrow \{w_1, w_2, w_3, w_5\} \]

Indirect method \([2]\)

What can we do if parallel path/loop conditions cannot be satisfied?
What can we do if certain nodes cannot be excited?

We combine the ideas of direct and indirect methods to increase flexibility.

Example - direct method & indirect method

\[
\{w_1, w_3, w_5\} \rightarrow \{w_2\} \\
\text{Direct method}
\]

\[
\{r_1, r_3, r_5\} \rightarrow \{w_1, w_2, w_3, w_5\} \\
\text{Indirect method}
\]
Example - direct method & indirect method

- Include both internal nodes and external excitation as predictor inputs
- Instead of measuring a parallel path we excite it and measure a descendant
- Generalized method increases flexibility in selecting sensors/actuators

\[\{w_1, w_3, w_5\} \rightarrow \{w_2\} \]

Direct method

\[\{r_1, r_3, r_5\} \rightarrow \{w_1, w_2, w_3, w_5\} \]

Indirect method

\[\{w_1, w_4, r_2, r_3\} \rightarrow \{w_2, w_4\} \]

Generalized method [1]

[1] K.R. Ramaswamy et al., CDC 2019
Contents

• Introduction and network model
• Single module identification: what’s the problem?
• Indirect methods
• Direct methods
• Algorithmic aspects
• Single module identifiability
• Conclusions
Machine learning in local module identification

- MISO/MIMO identification with all modules parameterized
- Brings in some major computational complexity
- We need only the target module. No NUISANCE!
Machine learning in local module identification

Maximize marginal likelihood of output data: $\hat{\eta} = \text{argmax}_\eta p(w_j; \eta)$

$\eta := [\theta \ \lambda_j \ \lambda_{k_1} \ \ldots \ \lambda_{k_p} \ \beta_j \ \beta_{k_1} \ \ldots \ \beta_{k_p} \ \sigma_j^2]^T$

Algorithms for multi-stage methods

Two stage method – Empirical Bayes \[^1\]:
- Incorporate Gaussian process modeling and TC kernels in \textit{indirect identification}
- Situation handled of sensor noise only

Model order reduction Steiglitz McBride (MORSM) \[^2\]:
- Step 1: Estimate a high-order ARX model using least squares
- Step 2: Apply SM to the simulated output and filtered input obtained from the estimates
- No non-convex optimization problems involved to get the parametric model

\[^1\] Everitt et al., Automatica 2018.
\[^2\] Galrinho et al., IFAC 2017.
Contents

• Introduction and network model
• Single module identification: what’s the problem?
• Indirect methods
• Direct methods
• Algorithmic aspects
• Single module identifiability
• Conclusions
Network identifiability for a single module

Can **one particular target** module G_{ji} be **distinguished** in network models on the basis of (selected) measured signals w, r?
Single module identifiability

Consider a network model set: \(\mathcal{M} = \{(G(\theta), R, H(\theta))\}_{\theta \in \Theta} \)

Based on a subset of measured node signals: \(w_m = Cw \)

Identification algorithms typically can uniquely estimate from \((w_m, r)\):

\[
T_{w_m r} \text{ and } \Phi_{\tilde{v}_m}
\]

with \(w_m = T_{w_m r} r + \tilde{v}_m \)

and \(\Phi_{\tilde{v}_m} \) the power spectral density of \(\tilde{v}_m \)
Single module identifiability

Definition

A module G_{ji} is network identifiable from (w_m, r) in a model set \mathcal{M} at $M_0 = M(\theta_0)$ if for all models $M(\theta_1) \in \mathcal{M}$:

$$
\begin{align*}
T_{w_m r}(q, \theta_1) &= T_{w_m r}(q, \theta_0) \\
\Phi_{\overline{w}_m}(\omega, \theta_1) &= \Phi_{\overline{w}_m}(\omega, \theta_0)
\end{align*}
\implies G_{ji}(\theta_1) = G_{ji}(\theta_0)
$$

It is **globally**\(^{[1]}\) network identifiable if this holds for all $M(\theta_0) \in \mathcal{M}$

It is **generically**\(^{[2]}\) network identifiable if this holds for almost all $M(\theta_0) \in \mathcal{M}$

\(^{[1]}\) Weerts et al., SYSID2015; Automatica, 2018; CDC 2018

\(^{[2]}\) Bazanella et al., CDC 2017; Hendrickx et al., IEEE-TAC, 2019.; Weerts et al., CDC 2018
Single module identifiability

- **Global** identifiability: dependent on rank conditions
- **Generic** identifiability: path-based conditions on the network graph \([1],[2]\)

Generic rank = number of vertex-disjoint paths

\[b_{R \rightarrow W} = 3 \]

Single module identifiability

Aspects / situations to be distinguished:

- Partial or full node measurements $w_m = w$
- Partial or full external excitation through r: $R = I$
- When discarding the spectrum equality1:

$$\begin{align*}
T_{w_m r}(q, \theta_1) &= T_{w_m r}(q, \theta_0) \\
\Phi_{v_m}(\omega, \theta_1) &= \Phi_{v_m}(\omega, \theta_0)
\end{align*} \implies G_{ji}(\theta_1) = G_{ji}(\theta_0)$$

one only exploits excitation from r rather than from (r, e): cf. indirect/direct method

1 Bazanella et al., CDC 2017; Hendrickx et al., IEEE-TAC, 2019.
Single module identifiability

Particular result: full measurement, partial excitation through \(r \) [1]:

For **generic** identifiability of target module:
- Measure all node signals in the network
- Excite a number of ascendants of the in-neighbours of \(w_j \) such that
 \[
 b_{\mathcal{R}\rightarrow \mathcal{N}} = b_{\mathcal{R}\rightarrow \mathcal{N}\setminus\{w_i\}} + 1
 \]

Single module identifiability

<table>
<thead>
<tr>
<th>Measurement / excitation setup</th>
<th>Excitation conditions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>r,e</td>
</tr>
<tr>
<td>Full measurement - partial excitation</td>
<td>Hendrickx et al. (TAC, 2019) - generic</td>
<td>Weerts et al. (Autom 2018) - global</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weerts et al. (CDC, 2018) - global, generic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shi et al. (IFAC, 2020) - generic</td>
</tr>
<tr>
<td>Full excitation - partial measurement</td>
<td>Bazanella et al. (CDC, 2017) - generic</td>
<td>Hendrickx et al. (TAC, 2019) - generic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>van Waarde et al., (POL, 2018) - global</td>
</tr>
<tr>
<td>Partial excitation - partial measurement</td>
<td>Bazanella et al. (CDC, 2019) - generic</td>
<td>Analysis through identification methods:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VdHof et al. (Autom 2013) - global</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ramaswamy et al. (CDC 2019) - global</td>
</tr>
</tbody>
</table>

Conditions for consistent module estimates (indirect/direct/generalized) act as sufficient conditions for single module identifiability
Extensions - Summary
Extensions

- **Optimal experiment design**, when excitation signal locations have been chosen
 Gevers et al., 2015; Bombois et al., 2018; Morelli et al., 2019;

- **Handling of sensor noise**, leading to errors-in-variables problems
 Dankers et al., 2015;

- **Variance aspects of estimation in structured models**
 Wahlberg et al., 2009; Günes et al., 2014; Everitt et al., 2013, 2017;
Summary

- Path-based conditions for consistent identification
- Degrees of freedom in selection of location for sensing/actuation
- Algorithms that avoid large scale non-convex optimization
- Important aspect: effectively using disturbances for exciting the network related to choice of indirect / direct / generalized method
- A priori known modules can be accounted for
Acknowledgements

Research team:

Arne Dankers Harm Weerts Giulio Bottegal Xiaodong Cheng

Shengling Shi Mannes Dreef Lizan Kivits Tom Steentjes Mircea Lazar Tijs Donkers Jobert Ludlage

Co-authors, contributors and discussion partners:
Xavier Bombois, Peter Heuberger, Donatello Materassi, Manfred Deistler, Michel Gevers, Jonas Linder, Sean Warnick, Alessandro Chiuso, Hakan Hjalmarsson, Miguel Galrinho, Martin Enqvist, Johan Schoukens
Single module identification in dynamic networks – the current status

Paul Van den Hof, Karthik Ramaswamy
21st IFAC World Congress, 12-17 July 2020, Berlin, Germany

Open invited track: “Data-driven modeling and learning in dynamic networks”

www.sysdynet.eu
www.pvandenhof.nl
p.m.j.vandenhof@tue.nl