A regularized kernel-based method for learning a module in a dynamic network with correlated noise

Venkatakrishnan Rajagopal, Karthik Ramaswamy, Paul Van den Hof

59th IEEE Conference on Decision and Control, December 14-18, 2020, Jeju Island, Republic of Korea

www.sysdynet.eu
k.r.ramaswamy@tue.nl
Dynamic network setup

\[v_i \] node signal

\[r_i \] external excitation

\[v_i \] process noise

\[G_{ij} \] modules
Dynamic network setup

Assumptions:

- Known topology
- Known noise correlation structure
- Strictly proper modules
- Network is stable
- No sensor noise

\[
\begin{bmatrix}
 w_1 \\
 w_2 \\
 \vdots \\
 w_L
\end{bmatrix} =
\begin{bmatrix}
 0 & G_{12}^0 & \cdots & G_{1L}^0 \\
 G_{21}^0 & 0 & \cdots & G_{2L}^0 \\
 \vdots & \vdots & \ddots & \vdots \\
 G_{L1}^0 & G_{L2}^0 & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
 w_1 \\
 w_2 \\
 \vdots \\
 w_L
\end{bmatrix} +
\begin{bmatrix}
 r_1 \\
 r_2 \\
 \vdots \\
 r_L
\end{bmatrix} +
\begin{bmatrix}
 H_{11}^0 & H_{12}^0 & \cdots & H_{1L}^0 \\
 H_{21}^0 & H_{22}^0 & \cdots & H_{2L}^0 \\
 \vdots & \vdots & \ddots & \vdots \\
 H_{L1}^0 & H_{L2}^0 & \cdots & H_{LL}^0
\end{bmatrix}
\begin{bmatrix}
 e_1 \\
 e_2 \\
 \vdots \\
 e_L
\end{bmatrix}
\]

\[
v = H^0 e
\]

\[
w = G^0(q)w + r + v
\]

\[
w = (I - G^0)^{-1}(r + v)
\]

Local module identification

- For a network with known topology, identify a single module in a dynamic network based on the given data \((w, r)\)

- For example, identify \(G_{21}\) on the basis of locally measured signals
Local direct method (LDM) for networks[1]

- Choice of predictor model – with node signals as inputs

- Noise correlations and confounding variables are handled using MIMO noise model.

- Leading to a MIMO predictor model with common signals in inputs and outputs.

Problem?

- Prediction error framework with prediction error:
 \[\varepsilon(t, \theta) = \bar{H}(q, \theta)^{-1}[w_Y(t) - \bar{G}(q, \theta)w_D(t)] \]

- MIMO estimation with all modules parameterized.

- Brings in the following problems for large networks:
 - Model order selection step for each module
 - Large number of parameters to estimate
 - Algorithms to solve network MIMO estimation problem not available

Approach

Predictor

\[w_Y(t) = (I - H^{-1})w_Y(t) + H^{-1}Gw_D(t) + e(t) \]

\[H^{-1}G = \begin{bmatrix} G_{ji} & 0 \\ 0 & 0 \end{bmatrix} + S_G \]

\[I - H^{-1} = S_H \]

- Keep parametric model for target module \(G_{ji} \)
- How to model the other modules in the MIMO setup?

What we need?

- Eliminate model order selection
- Reduce number of parameters
- Estimate the parameters
Modeling strategy

What we need?

- Eliminate model order selection
- Reduce number of parameters
- Estimate the parameters

Approach

- Impulse response model (IRM)
- IRM as Gaussian process
- Empirical Bayes approach

Stable spline (SS) Kernel

\[s \sim \mathcal{N}(0, \lambda K_\beta) \]

\[[K_\beta]_{x,y} = \beta^{\text{max}}(x,y) \]

\[\beta_j \in [0, 1), \quad \lambda \geq 0 \]

Estimation of parameters

- Maximize the marginal pdf: \(\hat{\eta} = \arg\max_{\eta} p(w; \eta) \)

- \(\eta \) contains parameters of target module, hyperparameters of GP and covariance of noise.

- We use Expectation – Maximization (EM) iterative algorithm to solve this.

 EM splits the maximization problem into simpler optimization problems:

 - Noise covariance & hyperparameter \(\lambda \) → Closed form solution
 - Hyperparameter \(\beta \) → Scalar optimization
 - Target module parameters → Nonlinear least squares problem

Numerical simulation

- Noise correlation between w_2 and w_3 handled by moving to output and (2 x 2) noise model[1]

- Signal selection (LDM): \{w_1, w_3\} \rightarrow \{w_2, w_3\}

- Data length = 500, MC simulations = 50

- We compare the developed EBLDM with:
 - Two-stage method with true order (TS+TO)
 - Direct method with true order (DM+TO) – \{w_1, w_3\} \rightarrow \{w_2\}
 - Direct method with model order selection (DM+MOS) – MISO setup

Numerical simulation

- EBDM → better fit than classical methods
- Gives smaller bias and reduced variance
- Reduction in variance → Due to regularization approach used in the method

\[G_{31} = \frac{b_1 q^{-1} + b_2 q^{-2}}{1 + a_1 q^{-1} + a_2 q^{-2}} \]
Conclusion

- For correlated noise and large sized networks
 - number of parameters to estimate increases
 - model order selection step is computationally infeasible.

- An algorithm has been developed for correlated noise networks that can handle MIMO network identification

- No model order selection required and lesser number of parameters to estimate

- Reduced variance estimates attributed to the regularized kernel based methods
A regularized kernel-based method for learning a module in a dynamic network with correlated noise

Venkatakrishnan Rajagopal, Karthik Ramaswamy, Paul Van den Hof

59th IEEE Conference on Decision and Control, December 14-18, 2020, Jeju Island, Republic of Korea

www.sysdynet.eu
k.r.ramaswamy@tue.nl