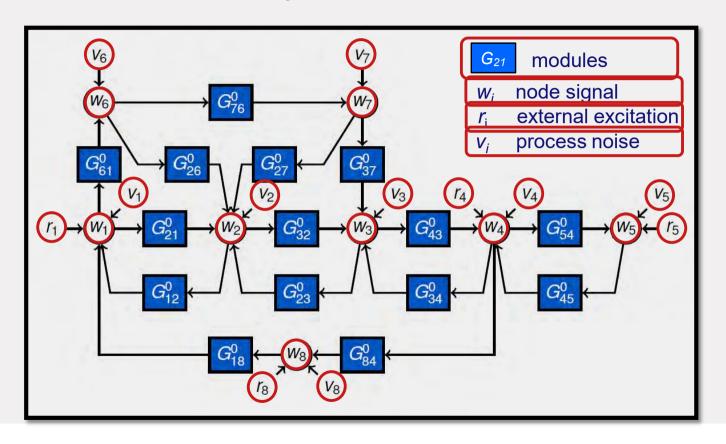


Dynamic network setup



Dynamic network setup

Assumptions:

- Known topology
- Known noise correlation structure
- Strictly proper modules
- Network is stable

 $w = G^0(q)w + r + v$

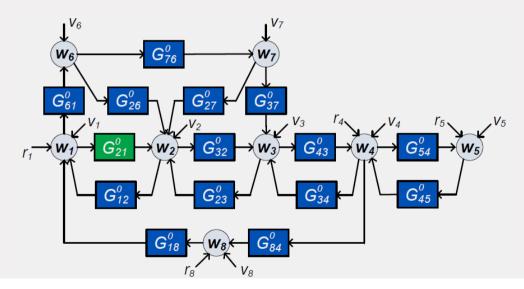
No sensor noise

$$\begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_L \end{bmatrix} = \begin{bmatrix} 0 & G_{12}^0 & \dots & G_{1L}^0 \\ G_{21}^0 & 0 & \dots & G_{2L}^0 \\ \vdots & \ddots & \ddots & \vdots \\ G_{L1}^0 & G_{L2}^0 & \dots & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_L \end{bmatrix} + \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_L \end{bmatrix} + \underbrace{\begin{bmatrix} H_{11}^0 & H_{12}^0 & \dots & H_{1L}^0 \\ H_{21}^0 & H_{22}^0 & \dots & H_{2L}^0 \\ \vdots & \vdots & \ddots & \vdots \\ H_{L1}^0 & H_{L2}^0 & \dots & H_{LL}^0 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_L \end{bmatrix}}_{\textbf{v} \rightarrow \textbf{Dynamically}}$$
 correlated noise

 $w = (I - G^0)^{-1}(r + v)$

Local module identification

- For a network with known topology, identify a single module in a dynamic network based on the given data (w,r)
- For example, identify G_{21} on the basis of locally measured signals



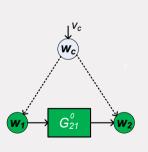
Local direct method (LDM) for networks^[1]

Choice of predictor model – with node signals as inputs

Noise correlations and confounding variables are handled using MIMO noise model.

Local Direct

method



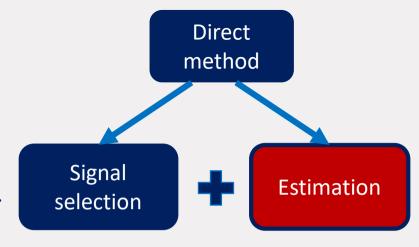
Leading to a MIMO predictor model with common signals in inputs and outputs.

Problem?

Prediction error framework with prediction error:

$$arepsilon(t, heta)=ar{H}(q, heta)^{-1}[w_{\mathcal{Y}}(t)-ar{G}(q, heta)w_{\mathcal{D}}(t)]$$

MIMO estimation with all modules parameterized.



- Brings in the following problems for large networks:
 - Model order selection step for each module
 - Large number of parameters to estimate
 - Algorithms to solve network MIMO estimation problem not available

Approach

Predictor

$$w_{\mathcal{Y}}(t) = (I - H^{-1})w_{\mathcal{Y}}(t) + H^{-1}Gw_{\mathcal{D}}(t) + e(t)$$

$$m{H^{-1}G} = egin{bmatrix} G_{ji} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} + m{S}_G \qquad \qquad m{I} - m{H^{-1}} & = m{S}_H$$

- lacktriangle Keep parametric model for target module G_{ji}
- ▶ How to model the other modules in the MIMO setup?

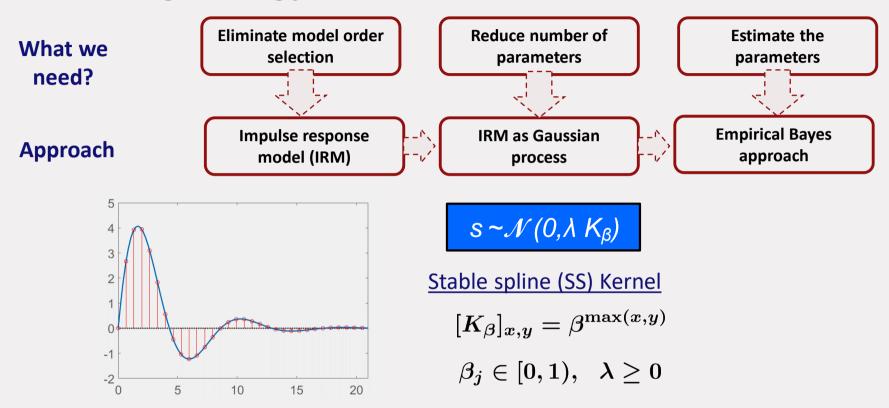
What we need?

Eliminate model order selection

Reduce number of parameters

Estimate the parameters

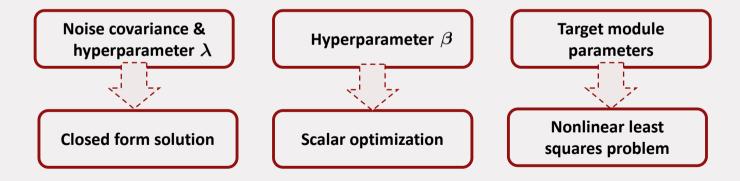
Modeling strategy



C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning. The MIT Press, 2006.

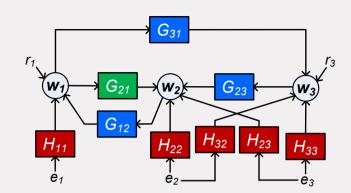
Estimation of parameters

- Maximize the marginal pdf: $\hat{\eta} = rgmax_{\eta} p(w_{\mathcal{Y}}; \eta)$
- $ightharpoonup \eta$ contains parameters of target module, hyperparameters of GP and covariance of noise.
- We use Expectation Maximization (EM) iterative algorithm to solve this.
 EM splits the maximization problem into simpler optimization problems



Numerical simulation

- Noise correlation between w_2 and w_3 handled by moving to output and (2 x 2) noise model^[1]
- ullet Signal selection (LDM): $\{w_1,w_3\}
 ightarrow \{w_2,w_3\}$



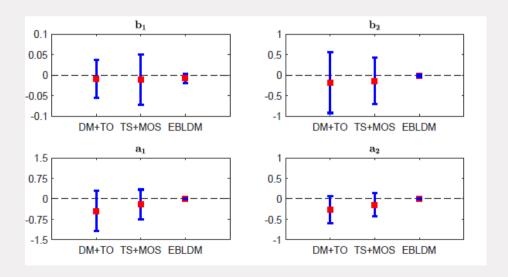
- Data length = 500, MC simulations = 50
- We compare the developed EBLDM with:
 - Two-stage method with true order (TS+TO)
 - ullet Direct method with true order (DM+TO) $\{w_1,w_3\}
 ightarrow \{w_2\}$
 - Direct method with model order selection (DM+MOS) MISO setup

Numerical simulation

► EBDM → better fit than classical methods

 $G_{31} = \frac{b_1 q^{-1} + b_2 q^{-2}}{1 + a_1 q^{-1} + a_2 q^{-2}}$

- Gives smaller bias and reduced variance
- ▶ Reduction in variance → Due to regularization approach used in the method



Conclusion

- For correlated noise and large sized networks
 - number of parameters to estimate increases
 - model order selection step is computationally infeasible.
- An algorithm has been developed for correlated noise networks that can handle MIMO network identification
- No model order selection required and lesser number of parameters to estimate
- Reduced variance estimates attributed to the regularized kernel based methods

