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Dynamic network setup
Assumptions:
 Known topology 
 Known noise correlation structure
 Strictly proper modules
 Network is stable
 No sensor noise

P. M. J. Van den Hof, A. G. Dankers, P. S. C. Heuberger, and X. Bombois. Automatica, 49(10):2994–3006, 2013.
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Local module identification
 For a network with known topology, identify a single module in a dynamic network based 

on the given data 

 For example, identify         on the basis of locally measured signals 



Local direct method (LDM) for networks[1]

 Choice of predictor model – with node signals as inputs

 Noise correlations and confounding variables
are handled using MIMO noise model.
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 Leading to a MIMO predictor model with 
common signals in inputs and outputs.



Problem ?
 Prediction error framework with prediction error:

 MIMO estimation with all modules parameterized.

 Brings in the following problems for large networks:
 Model order selection step for each module 
 Large number of parameters to estimate 
 Algorithms to solve network MIMO estimation problem not available
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Approach

 Keep parametric model for target module
 How to model the other modules in the MIMO setup?
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Modeling strategy
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Eliminate model order 
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Reduce number of 
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Impulse response 
model (IRM) 

IRM as Gaussian 
process

Empirical Bayes 
approachApproach

What we 
need?

s ~N (0,λ Kβ)

Stable spline (SS) Kernel

C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning. The MIT Press, 2006.

G. Pillonetto and G. De Nicolao. A new kernel-based approach for linear system identification. Automatica, 46(1), 2010.



Estimation of parameters
 Maximize the marginal pdf:  

 η contains parameters of target module, hyperparameters of GP and covariance of noise.   

 We use Expectation – Maximization (EM) iterative algorithm to solve this. 
EM splits the maximization problem into simpler optimization problems 

P. Dempster, N. M. Laird, and D. B. Rubin.  J. of the Royal Statistical Society. Series B (M.), 1977.

Noise covariance & 
hyperparameter Hyperparameter Target module 

parameters

Closed form solution Scalar optimization
Nonlinear least 

squares problem

Presenter
Presentation Notes
Iteratively performed until convergence [Boyles, 1983]
R. A. Boyles. On the convergence of the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 45(1):47–50, 1983.




Numerical simulation
 Noise correlation between         and        handled  

by moving to output and (2 x 2) noise model[1]

 Signal selection (LDM): 

 Data length = 500, MC simulations = 50

 We compare the developed EBLDM with:
 Two-stage method with true order (TS+TO)
 Direct method with true order (DM+TO) –
 Direct method with model order selection (DM+MOS) – MISO setup
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Numerical simulation
 EBDM  better fit than classical methods
 Gives smaller bias and reduced variance
 Reduction in variance  Due to regularization approach used in the method

11

𝐺𝐺31 =
𝑏𝑏1𝑞𝑞−1 + 𝑏𝑏2𝑞𝑞−2

1 + 𝑎𝑎1𝑞𝑞−1 + 𝑎𝑎2𝑞𝑞−2



Conclusion
 For correlated noise and large sized networks

 number of parameters to estimate increases
 model order selection step is computationally infeasible.

 An algorithm has been developed for correlated noise networks that can handle MIMO 
network identification

 No model order selection required and lesser number of parameters to estimate

 Reduced variance estimates attributed to the regularized kernel based methods
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