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Summary

Identification and compensation of parasitic effects in coreless linear motors

Coreless linear motors (CLMs) are widely used in industrial positioning systems.
Future generations of industrial positioning systems are facing with increasing de-
mand in precision and throughput. As a result, CLMs are required to operate at high
acceleration while maintaining high accuracy. This is a challenging problem as high
acceleration generally amplifies the parasitic effects and thus reduces the accuracy
of the motors. Therefore, in order to achieve high acceleration and high accuracy
simultaneously, compensation for parasitic effects in CLMs has to be addressed.

This thesis considers the problem of compensation for parasitic effects in CLMs
from a control perspective. The thesis presents a comprehensive approach to ac-
curate data-driven modeling and model-based optimal control and commutation of
CLMs. The five main contributions of this thesis are summarized below.

Firstly, this thesis provides an analysis of the main parasitic effects present in
a CLM, not only in the driving direction but also in non-driving directions. The
derivation of first-principle models of the main parasitic effects is presented using
available Fourier modeling technique, under the assumption that the exact motor
parameters are known.

Secondly, to eliminate the need for exact knowledge of the physical parameters
of the CLMs, a data-driven modeling method to identify the model of a CLM from
measurement data is introduced. The main idea of the method is to fit the model
structure obtained from first-principle modeling to the measurement data, thereby
obtaining the model’s parameters. This presents a challenging problem to closed-
loop system identification, due to position-dependent static nonlinearities, which
is approached using the instrumental variable identification framework with bias
correction.

The third contribution is a new optimal commutation method. The commutation
is formulated as an optimization problem which delivers the desired driving force
while minimizing the power loss in the coils and parasitic forces in non-driving
directions. Fast methods for solving the commutation optimization problem are
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developed and analyzed.
The fourth contribution is the design and implementation of a nonlinear model

predictive control (MPC) algorithm for CLMs. The position controller and commuta-
tion are combined into one single nonlinear MPC controller which is capable of de-
livering excellent tracking performance while guaranteeing that physical constraints
are satisfied. The advantages of the proposed nonlinear MPC controller compared
to linear MPC and commutation is analyzed.

The last contribution is a fast optimization solver for solving MPC and optimal
commutation which is capable of dealing with the stringent timing constraints of
real-time CLMs. The solver is a variant of sequential quadratic programming which
allows an arbitrary positive (semi-) definite Hessian approximation. It is proven
that the solver has guaranteed convergence without the need for a good Hessian
approximation, thereby reducing the online computational demand and allowing
real-time application on CLMs.

The theoretical results are complemented by experimental tests of the developed
methods for identification, control and commutation of CLMs, using a high-tech
industrial CLM which is used for long-stroke positioning of reticle stage in ASML
lithography machines. The experimental CLM prototype was developed in collabo-
ration with ASML
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Chapter 1
Introduction

1.1 Coreless linear motors and applications

Permanent magnet linear motors are electrical machines that generate direct linear
motion [45]. The history of linear motors can be traced back to the work of Charles
Wheatstone in 1840s. After that, several patents for trains driven by linear motors
have been granted. The first full-size working model was developed by Professor
Eric Laithwaite of Imperial College in London in the late 1940s [42].

Linear motors are capable of producing direct thrust force and therefore have
many advantages over classical rotary-to-linear devices which consist of rotary mo-
tors and mechanical transmission elements such as lead or ball screws, lead screws,
timing belts, racks and pinions. Linear motors offer superior accuracy and faster
response compared to their rotary-to-linear counterparts. Their thrust force capa-
bility is higher since it is not limited by the tensile strength of the belts like in the
rotary-to-linear devices. Furthermore, as there is no mechanical wear, linear motors
have excellent reliability and very long lifetime with almost no maintenance.

The two main types of permanent magnet linear motors are ironcore linear mo-
tors (ILMs) and coreless linear motors (CLMs). The two types have different perfor-
mance characteristics and therefore are suitable for different types of applications.
An ILM is composed of a magnet array and coil windings which are inserted in a
slotted lamination stack made of iron. The presence of the iron core significantly
increases the thrust force density as it focuses the magnetic field created by the coil
windings. However, the iron core also results in undesirable effects such as cogging
force, eddy current and a strong attractive force between the iron core and the mag-
nets. Unlike ILMs, CLMs have lower thrust force density due to the absence of the
iron core, but on the other hands do not suffer from cogging force or eddy currents.
As a result, CLMs are more suitable for applications that require smooth and accu-
rate movements. This thesis mainly focuses on CLMs, but the developed modeling
and control methods in principle can also be applied to ILMs.

A picture and a cross-sectional view of a CLM are shown in Figure 1.1 and Fig-
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Figure 1.1: A coreless linear motor.
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Figure 1.2: Cross-sectional view of a coreless linear motor.

ure 1.2, respectively. A CLM contains a stationary part called the stator and a mov-
ing part called the translator. The stator consists of two permanent magnet arrays
mounted on two iron plates. The translator contains one or multiple sets of three-
phase coils placed in the center of the air gap between the two magnet arrays. When
there is electrical current flowing in the coils, the interaction between magnetic field
and the current carrying coils produces an electromagnetic force that actuates the
motor. The motor is actuated in the x-direction, which is called the driving direction,
and in the ideal case produces no force in other directions.

CLMs are widely used in industrial high-precision positioning systems. They are
used in machine tools such as feed axes in milling, turning or grinding machines.
Another example is pick and place machines that require high accuracy and high
speed. Linear motors are also used in scanners that need smooth and precise move-



1.2 Parasitic effects in coreless linear motors 3

ments. Lithography machines for semiconductor industry also make use of linear
motors for fast and high precision positioning. In 2004, the North American market
for linear motors reached the size of US$ 95 million and the European linear mo-
tor market reached the size of US$ 114 million [31]. The worldwide linear motor
system market was estimated at about US$ 400 million in 2007 [45].

1.2 Parasitic effects in coreless linear motors

Future generations of industrial positioning systems are facing increasing demands
in precision and throughput. As a result, linear motors are required to operate at
higher acceleration and higher accuracy. This is a challenging problem due to the
presence of parasitic effects in linear motors, as high acceleration generally amplifies
the parasitic effects and thus reduces the accuracy of the motors. Therefore, in order
to operate at high acceleration while still maintaining high accuracy, it is necessary
to identify and compensate for the parasitic effects in linear motors.

The main causes of parasitic effects in CLMs are manufacturing tolerances. The-
oretically, CLMs are highly accurate by design. However, in practice it is infeasible
to manufacture a CLM that matches the exact design parameters. There are usually
many manufacturing tolerances in a real CLM which cause various parasitic forces
and torques [46]. For instance, the variation of coil dimensions and the variation of
magnet properties and dimensions result in parasitic Lorentz forces and torques in
multiple directions. The misalignment of the coil array within the air gap causes par-
asitic Lorentz forces and torques in multiple directions, and also parasitic reluctance
forces and torques in the non-driving directions.

These parasitic forces and torques are undesirable as they decrease the perfor-
mance of a CLM. The parasitic forces in the driving direction reduce the position
tracking performance of the motor. The parasitic forces and torques in non-driving
directions generate disturbances to other components of the system, thus reducing
the overall system performance. Therefore, these parasitic effects make it challeng-
ing to achieve fast and accurate control of CLMs. These parasitic effects are generally
neglected in classical control of CLMs as will be discussed in Section 1.3. To address
the future challenges in industrial positioning systems, a systematic approach to
identify and compensate for parasitic effects in linear motors is required.

1.3 Literature survey on modeling and control of core-
less linear motors

In this section we review the existing approaches for modeling and control of CLMs
and discuss their advantages and limitations.
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1.3.1 Modeling of CLMs

A linear motor can be modeled as two separate parts, namely the electromagnetic
part and the motion dynamics part, as depicted in Figure 1.3. The electromagnetic
part converts the input currents in the coils to electromagnetic forces. The resulting
forces act on the motion dynamics and generate motion. The motion dynamics part
is a linear dynamical system, while the electromagnetic part is a static nonlinearity.

Linear
dynamics

Static 
Nonlinearity

Linear Motor

Current Force Position

Electromagnetic
part

Motion part

Figure 1.3: Block diagram of a linear motor model.

The motion dynamics part represents a mass moving in the x-direction, sup-
ported by a linear bearing which induces friction on the movement. It is therefore
generally modeled as a mass-damper linear dynamical system [77, 98, 110]. The
electromagnetic part represents the relation between the currents in the coils and
the resulting electromagnetic forces, which can be considered to be static [30, 91,
92, 105]. Despite being static, the relation between the currents and the forces is
complicated due to the presence of various parasitic effects caused by manufactur-
ing tolerances such as misalignment of the coils in the air gap, variation of the coil
dimensions, variation of the magnets properties and dimensions [46]. Convention-
ally, for control purpose, the electromagnetic part is modeled simply as a gain in
the driving direction, which is known as the motor constant. The force in the driv-
ing direction is modeled as the product of the motor constant and the peak input
current, while the forces and torques in the non-driving directions are generally ne-
glected [56, 57, 77, 97, 98, 100]. This simple model does not take into account any
parasitic effects in the motor. Therefore, it is not a good candidate for model-based
control in high-precision applications, as the performance of model-based control
is highly dependent on the quality of the model. In order to capture the parasitic
effects, a more accurate model is required.

There are well-developed first-principle methods to model the electromagnetic
behaviors with high accuracy such as the finite element method (FEM), the Fourier
modeling method and the surface charge modeling method, which are usually used
for motor design and analysis [4,38,48,63,104]. In [46], the surface charge model is
used to investigate the effects of manufacturing tolerances in a CLM in three degrees
of freedom (DOFs). However, these modeling methods are usually too complex for
control purposes due to the large computational load which is difficult to implement
in real-time systems. Furthermore, these models require knowledge of the physical
parameters of the motor, including the manufacturing tolerances, which typically
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Linear
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Figure 1.4: Classical control scheme for linear motors.

are not known exactly.
Another modeling approach is data-driven modeling, also known as system iden-

tification. In this approach, the model of a linear motor is obtained by fitting a
model structure to measurement data. In the literature, the existing works on iden-
tification of linear motors have considered only the driving direction. To the best
of the author’s knowledge, there has been no research on identification of linear
motors in the non-driving directions. In the driving direction, identification of lin-
ear motors is typically formulated as identification of the model of the force ripple
as function of position, velocity and currents. The force ripple model is usually
written as a sum of basis functions where the coefficients are to be estimated by
fitting the model to measurement data. Some of the research works only consider
position-dependent and velocity-dependent force ripple [62,113]. Several methods
to identify the current-dependent force ripple has been developed in [7, 99, 114].
However, the contribution of the current in each coil to the force ripple is not ad-
dressed therein. In [88, 89], a method to identify the force function of each coil is
proposed, but this is limited to linear motors with only one set of three-phase coils.
Furthermore, the above-mentioned works in general require measurements of the
driving force, which are usually not available in real applications. In addition, the
effect of the output measurement noise on the parameter estimation has not been
addressed.

1.3.2 Control of CLMs

The standard position control scheme of a linear motor is shown in Figure 1.4. Due
to the special structure of the linear motor model which consists of a linear dynam-
ical system preceded by a static nonlinearity, the standard linear motor controller
typically consists of two sub-controllers: a commutation algorithm and a linear po-
sition controller. The commutation algorithm aims to invert the static nonlinearity,
thus removing it from the control problem. Linear control techniques can then be
applied to the remaining linear dynamics.

The inversion of the static nonlinearity is known in the electrical machines litera-
ture as commutation [3,89,92,106]. It is also known by different names in different
fields. In systems and control literature, it can be considered as a special static case
of feedback linearization, or exact linearization [1,78,93]. Authors in the aerospace
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area name it control allocation [51,76,101]. These different names refer to the same
problem, which is calculating the inversion of the nonlinearity, in order to remove
the nonlinearity from the control problem. Classical commutation of linear motors
makes use of simple three-phase sinusoidal current waveforms [45]. This approach
does not take into account the parasitic effects in the electromagnetic nonlinearity.
Therefore, the nonlinearity is not perfectly inverted, which results in force ripples
and hence reduces the tracking performance of the position control loop.

A more accurate commutation method is to find the exact inverse of the electro-
magnetic nonlinearity model. This method is applicable when the number of inde-
pendent current inputs is greater than or equal to the number of DOFs that need
to be controlled. In a conventional CLM, generally a single three-phase amplifier is
used to power one or multiple sets of three-phase coils. Consequently, the number
of independent inputs is two, since the coils are connected in star-configuration.
This is sufficient for classical control of CLMs because normally only one DOF is
controlled, while the other DOFs are constrained by the guiding system. The force
and torque in these DOFs are generally neglected. In order to control three DOFs of
a CLM, it is necessary to have at least two sets of three-phase coils powered inde-
pendently by two power amplifiers. In this case, the number of independent current
inputs is greater than the number of DOFs that need to be controlled and the CLM
is called over-actuated. The inversion problem consequently has an infinite num-
ber of solutions. The extra degrees of freedom can be used to minimize the power
losses in the coils. As a result, the commutation problem becomes an optimiza-
tion problem. This optimization problem can be solved using numerical optimiza-
tion [2,3,61,64,65,87,92,94], which is in general computationally expensive. In the
ideal case, the only force component in a CLM is the Lorentz force. Consequently,
at one fixed position of the translator, the relation between the current vector and
the force vector is linear. As a result, the commutation optimization problem can
be solved analytically by eliminating equality constraints [24, 85, 86, 88, 89], by us-
ing Lagrange multipliers [8, 9, 111], or by using the minimum 2-norm generalized
inverse [91,92,106].

However, the commutation problem is more complicated in nonideal CLMs whe-
re the coil array is not exactly in the center of the air gap. In addition to par-
asitic Lorentz forces and torques, there are also parasitic reluctance forces and
torques in the non-driving directions [46]. Since the reluctance forces and torques
are quadratic functions of the current vector, the commutation problem becomes a
quadratic optimization problem with quadratic equality constraints. In general, it is
difficult to find an analytical solution and hence numerical methods are necessary
for solving the commutation problem. Newton’s method has been used to solve com-
mutation problems in different types of electrical machines in [64,81], without real-
time experimental validation. Theoretically, Newton’s method can also be applied
to solve the commutation problem for parasitic forces compensation in CLMs. How-
ever, solving an optimization problem numerically using Newton’s method requires
a high computational load, which makes it challenging for real-time implementa-
tion in CLMs with high sampling rates. Therefore, more computationally efficient
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methods are needed for real-time implementation of optimal commutation methods.
For linear position control of linear motors, simple proportional-integral-deriva-

tive (PID) feedback and feedforward controllers are used in practice. The tracking
performance is mostly determined by the feedforward controller. The feedback con-
troller is mainly responsible for disturbance rejection. This classical approach does
not take into account the physical constraints of the system, such as current limit
and thrust force limit. This will be a drawback for future high-precision positioning
systems where linear motors have to operate near their physical limit to increase
efficiency and throughput.

Furthermore, classical control and commutation of CLMs generally do not take
into account the non-driving directions, resulting in parasitic forces in non-driving
directions. These parasitic forces become higher when the motor moves at higher
acceleration and hence can seriously impact system dynamics.

1.4 Research questions

To address the limitation of classical control approaches, in this thesis we aim to
develop a systematic approach to identify and compensate for parasitic effects in
CLMs in both driving and non-driving directions. The main research objective of the
thesis is formulated as follows:

Research objective: To identify and compensate for main parasitic effects in
coreless linear motors in multiple degrees of freedom.

We will address this main research objective step-by-step by investigating a series of
research questions. Considering the control scheme of a linear motor, we see three
main research problems as illustrated in Figure 1.5: modeling, commutation and
control. In this thesis, we formulate six research questions, in which the first two
consider the modeling problem, the third one deals with the commutation problem,
the forth one addresses the control problem, the fifth one considers the real-time
implementation issue of commutation and control of linear motors, and the last one
is on the experimental validation of the methods developed in the thesis.

First and foremost, it is necessary to understand the physical behavior of a non-
ideal CLM, not only in the driving direction, but also the non-driving directions.
The parasitic effects caused by different manufacturing tolerances in a nonideal
CLM have been investigated in [46] by Monte-Carlo simulations using a three di-
mensional surface charge model. However, the surface charge model generally has
to be solved numerically, which is not convenient for identification and control pur-
poses. To address this problem, our first research objective is to find closed form
expressions of the main parasitic effects in a CLM. The first research question is thus
formulated as follows:
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Figure 1.5: Research problems.

Q1: How to represent the main parasitic forces in a CLM mathematically in
closed form expressions?

By solving research question Q1, we obtain a first-principle model structure of
the physical behavior of a linear motor. However, to achieve high accuracy, first-
principle models require knowledge of the physical parameters of the linear motor,
including all the manufacturing tolerances, such as the size of each magnet and its
remanent magnetization, the size of each coil, the misalignment of the coil within
the air gap, etc. In practice, these informations are generally not available. An al-
ternative modeling approach is to obtain the model of the motor from measurement
data. This technique is known as data-driven modeling, or system identification.
Our objective is to perform experiments on a linear motor, measure the input and
output data and then fit the model structure obtained from first-principle modeling
to the measurement data, thereby estimating the model’s parameters. The second
research question is formulated as follows:

Q2: How to identify the parameters of the physical model structure of a CLM
from measurement data?

Having an accurate model of the linear motor, the next research objective is to
utilize the model to develop a compensation method for the parasitic effects. Since
the main source of parasitic effects in a linear motor is the electromagnetic part, an
accurate commutation method can cancel out these effects. Classical commutation
is based on a simplified model of the motor and thus cannot compensate for parasitic
effects. Our goal is to use the data-driven model, which also captures the behavior
of the parasitic effects, to derive an advanced commutation technique which can
compensate for these effects. The third research question is formulated as follows:
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Q3: How to derive an advanced commutation technique which can compensate
for the main parasitic effects in a CLM based on its data-driven model?

The next research question considers the position controller of a CLM. As dis-
cussed in the previous section, the controller of a CLM is conventionally divided
into two sub-controllers: a linear position controller and a commutation algorithm.
A clear advantage of this approach is its simplicity. However, this is not the optimal
setting, since the combination of the optimal solutions of the two sub-controllers
may not yield the optimal solution for the whole controller. As an example, when
there is a limit on the input currents for safety reasons, the linear position con-
troller is not aware of this limit due to the separation. Consequently, it can give a
force setpoint that is unachievable for the commutation problem due to the current
limit, causing the commutation problem to be infeasible. To address this problem,
our goal is to design a single nonlinear position controller which receives position
measurements and directly calculates the necessary currents in the coils. The forth
research question is formulated as follows:

Q4: How to design a single nonlinear controller for a CLM instead of using a
separate linear position controller and commutation?

The next research question addresses the real-time implementation issue of the
developed control techniques. The developed optimal control and commutation
algorithms require solving optimization problems numerically, which is in general
computationally demanding. This makes it difficult for real-time implementation
in CLMs with fast sampling rates where the time for computation is limited. To
address this problem, our research objective is to develop a computationally efficient
optimization algorithm which can be implemented in real-time. The fifth research
question is formulated as follows:

Q5: How to design a fast optimization solver such that the developed MPC and
commutation algorithms can be implemented in real-time?

Finally, it is of high importance to validate the developed identification, com-
mutation and control methods in a real CLM setup. Our last research question is
formulated as follows:

Q6: Can we validate the developed identification, commutation and control
methods in experiments with a real CLM setup?

The formulated research questions will be investigated in the next chapters of
this thesis.

1.5 Thesis outline

This thesis is divided into 8 chapters, including the introduction in Chapter 1 and
conclusions in Chapter 8. The contents of the other chapters are as follows.
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Chapter 2 addresses research questions Q1. First, the main types of parasitic
forces resulting from manufacturing tolerances in a CLM are discussed. First-princi-
ple models of these types of forces are then derived using the Fourier modeling
method. The resulting models are analytical and therefore are convenient for control
purposes which require fast computation of the models. Based on the resulting
models, a general model structure of a CLM is formulated, which will be used for
identification purpose in Chapter 3.

Chapter 3 addresses research questions Q2. Based on the first-principle model
structure derived in Chapter 2, an instrumental variable (IV) method for closed-loop
identification of CLMs is developed. We analyze the bias of the estimate obtained by
using the IV method together with the nonlinear autoregressive exogenous (NARX)
predictor and show that it is negligible in many applications. Furthermore, when the
probability distribution of the output measurement noise is known, a bias-corrected
estimate is introduced and is proven to be consistent. A simulation example is shown
for demonstration purposes. Some results presented in this chapter have been pub-
lished in [72].

Chapter 4 addresses research question Q3 by analyzing an optimal commuta-
tion problem formulation which can compensate for parasitic effects in CLMs. The
commutation problem is formulated as an optimization problem which minimizes
the dissipated power in the coils, subject to the constraints that the desired forces
and torques are obtained. As the constraints are quadratic, it is difficult to find an
analytical solution of the optimization problem and hence numerical methods are
necessary for solving the commutation problem. However, numerical optimization
methods are computationally demanding and therefore are difficult to implement in
systems with fast sampling rates like a CLM, which can be up to 20 kHz. To address
this problem, we derive two sub-obtimal analytical solutions for two special cases
when the CLM has only one or two sets of three-phase coils. The solutions are ana-
lytical and thus are more computationally efficient, but still close to the optimal one.
A look-up table solution which is very fast for online computation is also discussed.
Furthermore, a computationally efficient optimization algorithm for commutation is
developed, which will be discussed in more details in Chapter 6. Some of the results
in this chapter have been published in [67,68,73].

Chapter 5 considers research question Q4. This chapter presents the design and
implementation of a nonlinear model predictive control (MPC) algorithm for CLMs.
The position controller and commutation are combined into one single nonlinear
MPC controller which is capable of delivering excellent tracking performance while
guaranteeing that physical constraints are satisfied. The advantages of the proposed
nonlinear MPC control scheme compared to the cascaded control scheme which
consists of linear MPC and commutation is analyzed. Some results presented in this
chapter have been published in [71].

Chapter 6 addresses research question Q5 by developing a sequential quad-ratic
programming (SQP) algorithm with arbitrary positive (semi-) definite Hessian ap-
proximations. The proposed algorithm is proven to guarantee local convergence for
SQP even with poor Hessian approximation. As a result, any simple positive (semi-)
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definite Hessian approximations, even the identity matrix, can be used as the Hes-
sian approximation. Consequently, the computational load is reduced, especially
for large-scale problems like MPC. The effectiveness of the developed algorithm is
demonstrated in numerical examples. Parts of the results presented in this chapter
have been published in [69,70].

Chapter 7 considers research question Q6. To answer this question, an exper-
imental CLM setup is designed and constructed in collaboration with ASML. The
setup consists of a real industrial linear motor, power amplifiers and an encoder pro-
vided by ASML. Additional force sensors are added in order to measure the forces
and torques produced by the motor in driving and non-driving directions. A dSPACE
MicroLabBox development system is employed to control the system. The developed
modeling, commutation and control methods are validated on the setup. The exper-
imental results are presented and analyzed.

1.6 Publications

Preliminary versions of the results presented in this thesis have been published in
the articles listed below.

• Chapter 3 contains results that have been presented in:

T. T. Nguyen, M. Lazar, H. Butler and P. M. J. Van den Hof, “An instrumental
variable method for closed-loop identification of coreless linear motors,” in
IEEE American Control Conference (ACC), Milwaukee, WI, 2018.

• Chapter 4 contains results that have been presented in:

T. T. Nguyen, M. Lazar and H. Butler, “Cancellation of normal parasitic forces
in coreless linear motors,” in IEEE 19th International Conference on System
Theory, Control and Computing (ICSTCC), Cheile Gradistei, 2015.

T. T. Nguyen, H. Butler and M. Lazar, “An analytical commutation law for
parasitic forces and torques compensation in coreless linear motors,” in IEEE
European Control Conference (ECC), Aalborg, 2016.

T. T. Nguyen, M. Lazar, H. Butler, “A computationally efficient commutation
algorithm for parasitic forces and torques compensation in ironless linear mo-
tors,” in P. Hubbard (Ed.), 7th IFAC Symposium on Mechatronic Systems,
2016.

• Chapter 5 contains results that have been presented in:

T. T. Nguyen, M. Lazar and H. Butler, “Nonlinear model predictive control of
ironless linear motors,” in IEEE 2nd Conference on Control Technology and
Applications (CCTA), Copenhagen, 2018.

• Chapter 6 contains results that have been presented in:
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T. T. Nguyen, M. Lazar and H. Butler, “A Hessian-free algorithm for solving
quadratic optimization problems with nonlinear equality constraints,” in IEEE
55th Conference on Decision and Control (CDC), Las Vegas, NV, 2016.

T. T. Nguyen, M. Lazar and H. Butler, “A method to guarantee local conver-
gence for sequential quadratic programming with poor Hessian approxima-
tion,” in IEEE 56th Conference on Decision and Control (CDC), Melbourne,
2017.

T. T. Nguyen, M. Lazar and H. Butler, “A sequential quadratic programming
method with arbitrary (semi-) positive definite Hessian approximation,” in
preparation for journal submission, 2018.



Chapter 2
First-principle modeling of
coreless linear motors in
multiple degrees of freedom

2.1 Introduction

CLMs are known for their extremely high precision compared to ironcore linear
motors or rotary-to-linear devices. An ideal CLM produces only driving force. There
is no force in other directions due to its symmetrical stator design. The ripple in the
driving force is very low since there is no cogging force. Thus, CLMs are widely used
in precision positioning systems which require smooth motion and extremely high
accuracy.

However, in a real CLM, there are deviations from the design parameters such as
misalignment of the translator within the air gap, variation of coil dimensions and
variation of magnet properties and dimensions. These manufacturing tolerances
result in parasitic forces and torques in a CLM. The parasitic Lorentz forces and
torques caused by various manufacturing tolerances have been analyzed in [46] by
Monte-Carlo simulation using a three dimensional surface charge model. However,
the parasitic reluctance forces and torques are neglected therein.

In this chapter, we discuss all the main parasitic force components in a CLM. In
spite of various manufacturing tolerances, there are mainly three force components
in a CLM, which are Lorentz force, reluctance force and drag force. Furthermore,
we aim to derive the mathematical models of the main force components using first-
principle modeling methods. The resulting first-principle model structures will be
used for identification purpose in Chapter 3. Therefore, it is of interest to have first-
principle models which are analytical and have simple model structures. The two
most popular analytical methods for high-accuracy modeling of linear and planar
actuators are the surface charge method and the Fourier method [19,48].



14 First-principle modeling of CLMs in multiple degrees of freedom

The surface charge modeling method provides an analytical solution of the mag-
netic field in free space [19]. In this method, a cuboidal magnet is modeled as two
surface charges. The magnetic field of an array of permanent magnets is then cal-
culated as the sum of the contributions of the individual magnets [48]. Although
the solution of the magnetic field is analytical, the solutions of the Lorentz force
and torque generally require numerical integration. Closed form expressions of the
force and torque can be obtained when a straight current carrying volume is paral-
lel to the sides of a magnet [90]. However, these expressions are complicated and
therefore not favorable to identification and control purposes.

The Fourier modeling method, also called harmonic modeling method, is a semi-
analytical modeling technique based on Fourier analysis [38,41,115]. In this method
the source term distribution is written in terms of Fourier series. The geometry of
the actuator is divided into separate regions. The resulting magnetic field solutions
in each region are obtained by solving Maxwell’s equations. Then the force and
torque can also be obtained analytically. As a result, the Fourier modeling method is
attractive for identification and control purposes and therefore will be employed in
this chapter. The main disadvantage of the Fourier model is that it assumes periodi-
cal structure of the motor, which is not the case for a non-ideal CLM. However, this
drawback can be fixed simply by taking the whole motor length as the base Fourier
period.

To validate the resulting Fourier model, we will compare its output to the output
of a finite element method (FEM) model. The FEM is a numerical technique for
obtaining approximate solutions of boundary value problems [50]. In this method,
the domain is discretized into a finite number of small elements in which the fields
can be approximated by simple equations. All the elemental equations are then
assembled into a global system of equations. Finally, the solution is obtained by
solving the system of equations. The FEM is highly accurate and is applicable to
complex geometric shapes. In this chapter, we consider the FEM model as the "true
motor", due to its high accuracy. The Fourier model will be validated by comparing
its output to the output of the FEM model.

Furthermore, based on the analysis of the force components and the insights pro-
vided by the Fourier model, a general model structure of CLMs is formulated. This
general model structure will be useful for identification and model-based controller
design in the later chapters.

This chapter is organized as follows. Section 2.2 provides background knowl-
edge on coreless linear motor and Maxwell’s equation. Section 2.3 discusses the
main force components present in a CLM. The Fourier model of the Lorentz force
component is derived in Section 2.4. The Fourier model of the reluctance force
component is derived in Section 2.5. In Section 2.6, the Fourier model is validated
by comparing its outputs to the outputs of a FEM model. In Section 2.7, a gen-
eral model structure of CLMs is formulated. The conclusions are summarized in
Section 2.8.
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2.2 Background knowledge

2.2.1 Coreless linear motors topology and operating principle

A cross-sectional view with dimensions of a basic coreless linear motor is shown in
Figure 2.1. The stator consists of two permanent magnet arrays mounted on two
iron plates. The translator contains one or multiple sets of three-phase coils placed
in between the two magnet arrays. The notation for the dimensions are summarized
in Table 2.1.

2τp
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hm

hc g 

τc

wb δc
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Figure 2.1: Cross-sectional view of a coreless linear motor.

Table 2.1: CLM parameters

Symbol Parameter Unit
τp Magnet pole pitch mm
τc Coil pitch mm
δ Air gap mm

wm Magnet width mm
hm Magnet height mm
wc Coil width mm
δc Coil eye width mm
hc Coil height mm
wb Coil bundle width mm
D Motor depth mm
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Figure 2.2: Main magnetic field components in a CLM.

CLMs are synchronous electrical machines. The operating principle of CLMs is
similar to that of rotating synchronous motors. The force in a CLM with moving
coils is produced due to the interaction of magnetic fields produced by the perma-
nent magnets (PMs) and currents in the coils. The PMs generate a magnetic field
which is fixed in space. The currents in the coils produce a magnetic field with
double frequency in which the first harmonic component is moving and the second
harmonic component is fixed. The first harmonic component causes eddy current
losses and does not produce any force. The second harmonic component produces
force as it attempts to align with the magnetic field of the PMs. The maximum force
is produced when the phase shift θ0 between the magnetic field of the PMs and the
second harmonic component of the magnetic field of the coils is 90 degrees [60]. An
illustration of the main magnetic field components in a CLM is shown in Figure 2.2.

2.2.2 Mathematical operators

Let us consider a three dimensional Cartesian coordinate system and let �ex , �ey , and
�ey be the unit vectors for the x-, y-, and z-axes, respectively. The gradient operator
is defined as follows

∇�f = ∂ f

∂x
�ex + ∂ f

∂y
�ey + ∂ f

∂z
�ez . (2.1)

Let �f = fx�ex + fy�ey + fz�ez . The divergence operator is defined as follows

∇·�f = ∂ fx

∂x
+ ∂ fy

∂y
+ ∂ fz

∂z
. (2.2)

The curl operator, or rotation operator, is defined as follows

∇×�f =
(
∂ fz

∂y
− ∂ fy

∂z

)
�ex +

(
∂ fx

∂z
− ∂ fz

∂x

)
�ey +

(
∂ fy

∂x
− ∂ fx

∂y

)
�ez . (2.3)
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2.2.3 Magnetostatic Maxwell equations

The magnetostatic Maxwell equations are ( [29]):

∇× �H =�J , (2.4a)

∇·�B = 0, , (2.4b)

where H (A/m) is the magnetic field strength, B (T) is the magnetic flux density
and J (A/m2) is the current density.

The magnetostatic Maxwell equations can be solved directly for the fields. How-
ever, it is often more convenient to obtain the fields using potential functions [29].
Since the divergence of a curl is zero, equation (2.4b) implies

�B =∇×�A. (2.5)

The vector �A is called the magnetic vector potential. By introducing �A, we solve one
second order partial differential equation instead of two first order ones.

The magnetic flux density can be written as [38]

�B =μ0μr �H +μ0 �M0, (2.6)

where μ0 is the permeability of free space, μr is the relative permeability of the
magnetic material and �M0 (A/m) is the magnetization vector which is given by

�M0 =
�Brem

μ0
, (2.7)

where �Brem is the remanent magnetization of the magnets. Due to (2.4a), (2.5) and
(2.6), the magnetostatic Maxwell equations are reduced into a Poisson equation

∇2�A =−μ0
(∇× �M0

)−μ�J , (2.8)

where μ=μ0μr . In regions with no magnetic source, the Poisson equation is reduced
to a Laplace equation

∇2�A = 0. (2.9)

The Poisson and Laplace equations will be used to calculate the magnetic field solu-
tion in Sections 2.4 and 2.5.

2.3 Parasitic forces in linear motors

In spite of various manufacturing tolerances, there are only three main types of
forces in a CLM, which are the Lorentz force, the reluctance force and the drag
force. These three types of forces are discussed in this section. We only consider
the force in the x- and z-directions and torque about the y-axis, as the forces and
torques in other directions are negligible [46].
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2.3.1 Lorentz force

The Lorentz force is the force exerted on a current-carrying wire in a magnetic
field [29]. Linear motors are a type of Lorentz actuators. The Lorentz force is
the dominant type of force in linear motors and is used to actuate the motor. The
Lorentz force is linear with the input currents and can be written as follows

wLor = K (x)u, (2.10)

where u ∈ Rnu is the input current vector, K (x) ∈ R3×nu is the force constant vec-
tor which is position dependent, and wLor is the Lorentz wrench vector defined as
follows

wLor =
[
FxLor FzLor TyLor

]�
. (2.11)

If the motor is ideal, the total Lorentz force is equal to the nominal force and
there will be no parasitic force. However, in practice, there are manufacturing tol-
erances in CLMs which cause parasitic Lorentz forces in multiple directions. For
instance, the coils may not be placed exactly in the center of the air gap, some
magnets may have different remanent magnetization than the designed value, the
magnets and coils may vary in shape and size. The resulting total Lorentz force is
therefore different from the designed nominal force. The difference is defined as the
parasitic Lorentz force.

2.3.2 Reluctance force

The attractive forces between the coil array and the two back iron plates are reluc-
tance forces [77]. If the coil is placed exactly in the center of the air gap then the
two reluctance forces cancel each other. However, if the coil array is misaligned,
the reluctance force between the coil array and the closer iron plate becomes larger,
resulting in nonzero total reluctance force. It is obvious that the reluctance force
only act in the z-direction.

The reluctance force is quadratic in the input currents and can be written as
follows

Fzrel = u�Gu, (2.12)

where G ∈ Rnu×nu is a constant matrix. It will be shown in Section 2.5 that the
reluctance force is independent of the x-position of the translator.

2.3.3 Drag force

Drag force is the force acting in the opposite direction of the movement of the trans-
lator. In CLMs, drag force is mainly caused by friction. The friction force consists of
Coulomb friction, viscous friction and Stribeck friction [110]. The friction force can
be modeled using the LuGre model as follows

Ffric =
(
Fc + (Fs −Fc )e−(v/vs )2 +d v

)
sign(v), (2.13)
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where Fc is the minimum level of Coulomb friction, Fs is the level of static friction,
v is the speed, vs is the lubricant parameter determined by empirical experiment,
and d is the viscous frictional coefficient [6,98,112].

2.4 Fourier modeling of Lorentz force in a CLM

Fourier modeling is a semi-analytical modeling technique based on Fourier analy-
sis [38, 41, 115]. In this method, the source term distribution is written in terms of
Fourier series. The geometry of the actuator is divided into separate regions. The
resulting magnetic field solutions in each region are obtained by solving Laplace and
Poisson equations. The unknown coefficients are determined from a set of bound-
ary conditions. The Fourier modeling method is popular for design and analysis of
linear and planar actuators [4,20,39,47,80].

The resulting Fourier model is semi-analytical because it contains an infinite
number of harmonics. In practice, only a finite number of harmonics can be taken
into account. The number of harmonics is chosen dependent on the required accu-
racy of the model. As a result, the Fourier model is analytical and therefore can be
calculated faster than a FEM model and a surface charge model. Fourier modeling is
thus attractive for control and fast simulation. Fourier modeling is usually used for
periodical structures. However, it can still be used to model a non-ideal CLM, which
is non-periodical, simply by taking the whole motor length as one Fourier period, at
the price of increasing the number of harmonics, which increases the computational
cost.

In this section, we employ the Fourier modeling technique to calculate the Lor-
entz force acting on the coil array of a CLM. We follow the modeling procedure
described in [38].

2.4.1 Division in regions

Firstly, the CLM is divided into three regions as shown in Figure 2.3. Regions I and
III are the magnetized regions. Regions II is the source-free region.

The fundamental frequency of a region is defined as:

ωn = nπ

τ
, (2.14)

where n is the harmonic number. The width of the region is 2τ. For ease of presen-
tation, τ is chosen equal to τp in this section. However, τ can also be chosen as the
whole motor length in order to capture the manufacturing tolerances.

2.4.2 Source term description

In the CLM topology, permanent magnets are used to generate a magnetic field. The
permanent magnets are magnetized in the normal direction as shown in Figure 2.4.
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Figure 2.3: Magnetic source regions.

Figure 2.4: Magnetization of permanent magnets.

As a result, only the z-component of the magnetization vector �M0 is non-zero. In
region I, the magnetization of the magnets in the z-direction can be described by a
Fourier series

M I
z (x) =

∞∑
n=1

(
M I

zcn cos(ωn x)+M I
zsn sin(ωn x)

)
, (2.15)

where

M I
zsn = 1

τp

∫2τp

0
M I

z (x)sin(ωn x)d x = 4Br em

μ0nπ
sin

(nπ

2

)
sin

(
nπτm

2τp

)
, (2.16)

M I
zcn = 1

τp

∫2τp

0
M I

z (x)cos(ωn x)d x = 0. (2.17)

A similar source term description applies to region III. There is no magnetic source
in region II.

2.4.3 Semianalytical solution

Since the source terms are described by Fourier series, the solution of the magnetic
vector potential is also written in terms of Fourier components. The field equations
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are given by the Laplace equation in region II and Poisson equation in region I and
III. These equations are solved for each region by separation of variables. Since
the magnetization vector �M0 has only a non-zero component in the z-direction, the
magnetic vector potential �A only has a non-zero component in the y-direction which
is denoted by Ay .

Region II (air)

As there is no magnetic source in region II, the field equation is given by the Laplace
equation

∇2�AII = 0. (2.18)

The y-component AII
y of the magnetic vector potential can be written as the sum of

harmonic components as follows

AII
y =

∞∑
n=1

AII
yn , (2.19)

where AII
yn denotes the nth harmonic components of AII

y . The Laplace equation is
solved by separation of variables [17]. Assume that the solution has the following
form

AII
yn(x, z) = X II

n (x)Z II
n (z). (2.20)

Since the magnetization is described using a Fourier series as function of x, the func-
tion for the x-direction X II

n (x) also consists of sine and cosine functions as follows

X II
n (x) = aII

xn cos(ωn x)+bII
xn sin(ωn x) , (2.21)

For the Laplace equation (2.18) to be satisfied, the function for the z-direction Z II
n (z)

is given by [40]

Z II
n (z) = aII

zneωn z +bII
zne−ωn z . (2.22)

Here, due to the choice of the coordinate system, the magnetization has only sine
terms. Consequently, the magnetic vector potential only has cosine terms. There-
fore, the solution has the form

AII
yn = 1

ωn

(
aII

xn aII
zneωn z +aII

xnbII
zne−ωn z)cos(ωn x) , (2.23)

which is then simplified to

AII
yn = 1

ωn

(
aII

n eωn z +bII
n e−ωn z)cos(ωn x) . (2.24)
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From equation (2.5), the x-component and the z-component of the magnetic flux
density are given by

Bx = ∂Ay

∂z
, (2.25)

Bz =−∂Ay

∂x
. (2.26)

As a result, it follows from (2.24) that the nth harmonic components of B II
x and B II

z

are given by

B II
xn = (

aII
n eωn z −bII

n e−ωn z)cos(ωn x) , (2.27)

B II
zn = (

aII
n eωn z +bII

n e−ωn z)sin(ωn x) , (2.28)

Here, the coefficients aII
n and bII

n are unknown and to be determined by boundary
conditions.

Region I and III (Magnet array)

Regions I and III contain permanent magnet arrays. Consequently, the field equa-
tions in these regions are given by the Poisson equation. Let us first consider region
I. We have the Poisson equation

∇2�AI =−μ0(∇× �M0). (2.29)

The Poisson equation is solved using separation of variables. The solution of each
harmonic component of AI

y has the form

AI
yn(x, z) = X I

n(x)Z I
n(z)+P I

n(x, z) (2.30)

where X I
n(x)Z I

n(z) is the homogeneous solution and P I
n(x, z) is the particular solution.

The homogeneous solution has the same form as (2.24). Since the righthand side
of (2.29) is independent of z, we choose a particular solution depending only on x,
i.e. P I

n(x, z) = P I
n(x). Therefore, it follows from the Poisson equation (2.29) that

d 2P I
n(x)

d x2 =−μ0
d M I

zn(x)

d x
=−μ0ωn M I

zsn cos(ωn x). (2.31)

By twice integrating the above equation we obtain

P I
n(x) =μ0

1

ωn
M I

zsn cos(ωn x). (2.32)

Combining the homogeneous solution and the particular solution we have

AI
yn = 1

ωn

(
aI

neωn z +bI
ne−ωn z +μ0M I

zsn

)
cos(ωn x) . (2.33)
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The magnetic flux density can then be calculated using formulas (2.25) and (2.26).
The results are as follows

B I
xn = (

aI
neωn z −bI

ne−ωn z)cos(ωn x) , (2.34)

B I
zn = (

aI
neωn z +bI

ne−ωn z +μ0M I
zsn

)
sin(ωn x) . (2.35)

Here, the coefficients aI
n and bI

n are unknown and to be determined by boundary
conditions. A similar description of the magnetic flux density applies to region III.

Summary

In summary, the magnetic flux densities in all regions are given by

B I
x =

∞∑
n=1

(
aI

neωn z −bI
ne−ωn z)cos(ωn x) (2.36a)

B I
z =

∞∑
n=1

(
aI

neωn z +bI
ne−ωn z +μ0M I

zsn

)
sin(ωn x) (2.36b)

B II
x =

∞∑
n=1

(
aII

n eωn z −bII
n e−ωn z)cos(ωn x) (2.36c)

B II
z =

∞∑
n=1

(
aII

n eωn z +bII
n e−ωn z)sin(ωn x) (2.36d)

B III
x =

∞∑
n=1

(
aIII

n eωn z −bIII
n e−ωn z)cos(ωn x) (2.36e)

B III
z =

∞∑
n=1

(
aIII

n eωn z +bIII
n e−ωn z +μ0M III

zsn

)
sin(ωn x) (2.36f)

2.4.4 Boundary conditions

In general, the boundary conditions are [38]:

• Between two regions:

– H tangential is continuous at an interface if the current density at the
surface is zero.

– B normal is continuous across an interface.

• At interface of infinitely permeable iron:

– H tangential is zero.

• At infinity:

– A, B , H are all zero.

For the considered CLM topology, the boundary conditions (BCs) are:
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• BC1: H I
x

∣∣∣
z=0

= 0.

• BC2: B I
z

∣∣∣
z=hm

= B II
z

∣∣∣
z=hm

.

• BC3: H I
x

∣∣∣
z=hm

= H II
x

∣∣∣
z=hm

.

• BC4: B II
z

∣∣∣
z=g+hm

= B III
z

∣∣∣
z=g+hm

.

• BC5: H II
x

∣∣∣
z=g+hm

= H III
x

∣∣∣
z=g+hm

.

• BC6: H III
x

∣∣∣
z=g+2hm

= 0.

These boundary conditions lead to a set of linear equations:

BC1: aI
n −bI

n = 0 (2.37a)

BC2: aI
neωn hm +bI

ne−ωn hm −aII
n eωn hm −bII

n e−ωn hm =−μ0M I
zsn (2.37b)

BC3: aI
neωn hm −bI

ne−ωn hm −μr aII
n eωn hm +μr bII

n e−ωn hm = 0 (2.37c)

BC4: aII
n eωn (g+hm ) +bII

n e−ωn (g+hm ) −aIII
n eωn (g+hm ) −bIII

n e−ωn (g+hm ) =μ0M III
zsn

(2.37d)

BC5: μr aII
n eωn (g+hm ) −μr bII

n e−ωn (g+hm ) −aIII
n eωn (g+hm ) +bIII

n e−ωn (g+hm ) = 0
(2.37e)

BC6: aIII
n eωn (g+2hm ) −bIII

n e−ωn (g+2hm ) = 0 (2.37f)

The unknown coefficients ak
n and bk

n , with k = I, II, III, are then obtained by solving
the set of equations (2.37).

2.4.5 Force calculation

Let us consider a single coil with a current density �J in the magnetic field in the
air gap, which is region II. The only non-zero component of the current density is
the component in the y-direction Jy . The electromagnetic force acting on the coil is
given by Lorentz’s formula [29]

�FLor =
∫

S

�J ×�B IIdS =
∫

S
Jy B II

z dS�ex −
∫

S
Jy B II

x dS�ez , (2.38)

where S is the cross-sectional area of the coil. It follows that

FxLor =
∫

S
Jy B II

z dS,

FzLor =−
∫

S
Jy B II

x dS. (2.39)
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Given the description of the magnetic flux density in (2.36), the force Fx and Fz are
calculated as follows

FxLor =
∫

S
Jy B II

z dS

=
Jy Dτ2

p

π2

∞∑
n=1

1

n2

(
aII

n eωn z2 −bII
n e−ωn z2 −aII

n eωn z1 +bII
n e−ωn z1

)
(cos(ωn x1)−cos(ωn x2)−cos(ωn x3)+cos(ωn x4)) , (2.40)

FzLor =−
∫

S
Jy B II

x dS

=
Jy Dτ2

p

π2

∞∑
n=1

1

n2

(
aII

n eωn z2 +bII
n e−ωn z2 −aII

n eωn z1 −bII
n e−ωn z1

)
(sin(ωn x1)− sin(ωn x2)− sin(ωn x3)+ sin(ωn x4)) , (2.41)

where the limits of integration are:

x1 =x, (2.42)

x2 =x +wc , (2.43)

x3 =x +wc +δc , (2.44)

x4 =x +wc +δc +wc , (2.45)

and

z1 =hm +δ, (2.46)

z2 =hm +δ+hc . (2.47)

The total Lorentz force acting on the translator is then calculated as the sum of the
Lorentz forces acting on each coil. It can be seen that the Lorentz force is dependent
on the current density and the position of the translator. At a fixed position of the
translator, the Lorentz force is linear with the current density.

2.5 Fourier modeling of reluctance force in a CLM

In this section we apply the Fourier modeling method to model the reluctance force
in a CLM. We follow the same modeling procedure as described in the previous
section. The main difference compared to the previous section is that the magnetic
sources in this case are the current-carrying coils.

2.5.1 Division in regions

The geometry is divided into source and source-free regions as shown in Figure 2.5.
Region II is the current-carrying region. Regions I and III are the source-free regions.
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A- B+ B- C+ C-
I
II
III

A+

x

z

y

Figure 2.5: Coil regions.

The fundamental frequency of a region is defined as

ωn = nπ

τ
, (2.48)

where n is the harmonic number. The width of the region is 2τ. In this section, the
width of the region is chosen equal to the length of the coils array, which is 4τp .

2.5.2 Source term description

In the reluctance force case, the magnetic sources are the current-carrying coils.
Similar to the Lorentz case, we write the magnetic source term, which is the current
density, as a Fourier series

Jy (x) = Jy0 +
∞∑

n=1

(
Jycn cos(ωn x)+ Jy sn sin(ωn x)

)
, (2.49)

where

Jy0 = 1

4τp

∫4τp

0
Jy (x)d x = 0, (2.50)

Jycn = 1

2τp

∫4τp

0
Jy (x)cos(ωn x)d x

= 1

nπ

⎧⎩ J A sin

(
nπwc

2τp

)
− J A sin(0)

− J A sin

(
2

3
nπ

)
+ J A sin

(
nπ

2τp

(
4

3
τp −wc

))

+ JB sin

(
nπ

2τp

(
4

3
τp +wc

))
− JB sin

(
2

3
nπ

)

− JB sin

(
4

3
nπ

)
+ JB sin

(
nπ

2τp

(
8

3
τp −wc

))

+ JC sin

(
nπ

2τp

(
8

3
τp +wc

))
− JC sin

(
4

3
nπ

)

− JC sin(2nπ)+ JC sin

(
nπ

2τp

(
4τp −wc

)) ⎫⎭ , (2.51)
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Jy sn = 1

2τp

∫4τp

0
Jy (x)sin(ωn x)d x

= 1

nπ

⎧⎩ − J A cos

(
nπwc

2τp

)
+ J A cos(0)

+ J A cos

(
2

3
nπ

)
− J A cos

(
nπ

2τp

(
4

3
τp −wc

))

− JB cos

(
nπ

2τp

(
4

3
τp +wc

))
+ JB cos

(
2

3
nπ

)

+ JB cos

(
4

3
nπ

)
− JB cos

(
nπ

2τp

(
8

3
τp −wc

))

− JC cos

(
nπ

2τp

(
8

3
τp +wc

))
+ JC cos

(
4

3
nπ

)

+ JC cos(2nπ)− JC cos

(
nπ

2τp

(
4τp −wc

)) ⎫⎭ . (2.52)

Here, J A, JB and JC are the current densities in the coils A, B and C, respectively.

2.5.3 Semianalytical solution

The solutions for the magnetic vector potentials are obtained by solving the Laplace
equation in region I and III and Poisson equation in region II. These equations are
solved by separation of variables. Since the current density vector �J has only a non-
zero component in the y-direction, it follows that the magnetic vector potential �A
only has a non-zero component in the y-direction which is denoted by Ay .

Region I and III: air

The field equation in region I is given by the Laplace equation

∇2�AI = 0. (2.53)

The Laplace equation is solved by separation of variables similar to Section 2.4.3.
The resulting magnetic vector potential is

AI
yn = 1

ωn

(
aI

neωn z +bI
ne−ωn z)cos(ωn x)+ 1

ωn

(
cI

neωn z +d I
ne−ωn z)sin(ωn x) .

(2.54)

The flux density can then be calculated using formulas (2.25) and (2.26). The
results are as follows

B I
xn =

(
aI

neω
I
n z −bI

ne−ωn z
)

cos(ωn x)+ (
cI

neωn z −d I
ne−ωn z)sin(ωn x) (2.55)

B I
zn =

(
aI

neω
I
n z +bI

ne−ωn z
)

sin(ωn x)− (
cI

neωn z +d I
ne−ωn z)cos(ωn x) (2.56)

A similar description of the magnetic flux density applies to region III.
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Region II: Coil array

The field equation in region II is given by the Poisson equation

∇2�AII =−μ�J . (2.57)

The Poisson equation is solved by separation of variables similar to Section 2.4.3.
The resulting magnetic vector potential is

AII
yn = 1

ωn

(
aII

n eωn z +bII
n e−ωn z + μ0

ωn
Jycn

)
cos(ωn x)

+ 1

ωn

(
cII

n eωn z +d II
n e−ωn z + μ0

ωn
Jy sn

)
sin(ωn x) . (2.58)

The flux density can then be calculated using formulas (2.25) and (2.26). The
results are as follows

B II
xn =

(
aII

n eω
II
n z −bII

n e−ωn z
)

cos(ωn x)+ (
cII

n eωn z −d II
n e−ωn z)sin(ωn x) , (2.59)

B II
zn =

(
aII

n eω
II
n z +bII

n e−ωn z + μ0

ωn
Jycn

)
sin(ωn x)

−
(
cII

n eωn z +d II
n e−ωn z + μ0

ωn
Jy sn

)
cos(ωn x) . (2.60)

Summary

In summary, the magnetic flux densities in all regions are given by

B I
xn =(

aI
neωn z −bI

ne−ωn z)cos(ωn x)+ (
cI

neωn z −d I
ne−ωn z)sin(ωn x) , (2.61a)

B I
zn =(

aI
neωn z +bI

ne−ωn z)sin(ωn x)− (
cI

neωn z +d I
ne−ωn z)cos(ωn x) , (2.61b)

B II
xn =(

aII
n eωn z −bII

n e−ωn z)cos(ωn x)+ (
cII

n eωn z −d II
n e−ωn z)sin(ωn x) , (2.61c)

B II
zn =

(
aII

n eωn z +bII
n e−ωn z + μ0

ωn
Jycn

)
sin(ωn x)

−
(
cII

n eωn z +d II
n e−ωn z + μ0

ωn
Jy sn

)
cos(ωn x) , (2.61d)

B III
xn =(

aIII
n eωn z −bIII

n e−ωn z)cos(ωn x)+ (
cIII

n eωn z −d III
n e−ωn z)sin(ωn x) , (2.61e)

B III
zn =(

aIII
n eωn z +bIII

n e−ωn z)sin(ωn x)− (
cI

neωn z +d III
n e−ωn z)cos(ωn x) . (2.61f)

2.5.4 Boundary conditions

The boundary conditions are similar to Section 2.4.4. For the considered CLM topol-
ogy, the boundary conditions are

• BC1: H I
x

∣∣∣
z=0

= 0.

• BC2: B I
z

∣∣∣
z=zI

= B II
z

∣∣∣
z=zI

,
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• BC3: H I
x

∣∣∣
z=zI

= H II
x

∣∣∣
z=zI

,

• BC4: B II
z

∣∣∣
z=zII

= B III
z

∣∣∣
z=zII

,

• BC5: H II
x

∣∣∣
z=zII

= H III
x

∣∣∣
z=zII

,

• BC6: H III
x

∣∣∣
z=zIII

= 0,

where

zI = hm +δ, (2.62)

zII = hm +δ+hc , (2.63)

zIII = 2hm +δ+hc . (2.64)

These boundary conditions lead to a set of linear equations

BC1: aI
n −bI

n = 0, (2.65a)

cI
n −d I

n = 0, (2.65b)

BC2: aI
neωn zI +bI

ne−ωn zI −aII
n eωn zI −bII

n e−ωn zI = μ0

ωn
Jycn , (2.65c)

cI
neωn zI +d I

ne−ωn zI − cII
n eωn zI −d II

n e−ωn zI = μ0

ωn
Jy sn , (2.65d)

BC3: aI
neωn zI −bI

ne−ωn zI −aII
n eωn zI +bII

n e−ωn zI = 0, (2.65e)

cI
neωn zI −d I

ne−ωn zI − cII
n eωn zI +d II

n e−ωn zI = 0, (2.65f)

BC4: aII
n eωn zII +bII

n e−ωn zII −aIII
n eωn zII −bIII

n e−ωn zII =− μ0

ωn
Jycn , (2.65g)

cII
n eωn zII +d II

n e−ωn zII − cIII
n eωn zII −d III

n e−ωn zII =− μ0

ωn
Jy sn , (2.65h)

BC5: aII
n eωn zII −bII

n e−ωn zII −aIII
n eωn zII +bIII

n e−ωn zII = 0, (2.65i)

cII
n eωn zII −d II

n e−ωn zII − cIII
n eωn zII +d III

n e−ωn zII = 0, (2.65j)

BC6: aIII
n eωn zIII −bIII

n e−ωn zIII = 0, (2.65k)

cIII
n eωn zIII −d III

n e−ωn zIII = 0. (2.65l)

The unknown coefficients ak
n , bk

n , ck
n and d k

n , with k = I, II, III, are then obtained by
solving the set of equations (2.65).

2.5.5 Force calculation

Reluctance forces are the attractive forces between the coil array and the two back
iron plates. The reluctance forces are only present in the z-direction. The reluctance
force between the coil and the lower back iron plate in Figure 2.5 can be calculated
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by applying Maxwell stress tensor to a plane surface S in the air gap at zS = hm +δ

as follows [80]

F I
zrel =

D

2μ0

∮
S

(
(B I

z )2 − (B I
x )2)dS

=4τp D

μ0

∞∑
n=1

(
aI

nbI
n + cI

nd I
n

)
. (2.66)

The reluctance force between the coil and the upper back iron plate F III
zrel is calculated

in the same way. The total reluctance force is then calculated as the sum of the two
reluctance forces. It can be seen from (2.65) and (2.66) that the reluctance force
is dependent on the current density J and the position of the translator in the z-
direction, but it is not dependent on the position in the x-direction.

2.6 Model validation

In this section, the Fourier modeling procedure described in the previous sections
is applied to an example motor. The resulting Fourier model is compared to a FEM
model for validation. The FEM is a numerical technique for solving partial differen-
tial equations. The mathematical model is divided into small components of simple
geometry, which are called finite elements. The response of the mathematical model
is obtained by assembling the responses of all elements. The FEM is highly accurate
and is applicable to complex geometric shapes. Therefore, in this chapter, we vali-
date the Fourier model by comparing its output to the output of the FEM model.

A FEM model of an example CLM is built using Cobham Opera Simulation soft-
ware as shown in Figure 2.6. The motor parameters are summarized in Table 2.2.
The example motor has two sets of three-phase coils next to each other. Some arti-
ficial manufacturing tolerances are added to make the motor nonideal. Firstly, the
coils are shifted 1 mm out of the center of the air gap in the z-direction. This dis-
placement causes not only parasitic Lorentz forces and torques, but also reluctance
forces and torques, since the motor geometry becomes asymmetric. Secondly, some
magnets have higher or lower remanent magnetization as depicted in Figure 2.6.
The variation of remanent magnetization causes parasitic Lorentz forces and torques
in the motor.

For Fourier modeling, the whole motor length of 780 mm is taken as the base
Fourier period. The number of harmonics is chosen as nF = 50. The manufacturing
tolerances of the FEM model are also included in the Fourier model. We simulate
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Figure 2.6: FEM model of the example coreless linear motor.

Table 2.2: Geometric parameters and material properties of the example motor.

Parameter Symbol Value Unit
Magnet pole pitch τp 39 mm
Coil pitch τc 52 mm
Air gap g 3.45 mm
Magnet width wm 36 mm
Magnet height hm 13.6 mm
Coil width wc 52 mm
Coil height hc 9 mm
Coil leg width wb 22 mm
Number of turns per coil Nt 352
Motor depth D 90 mm
Remanent magnetization Br em 1.35 T
Motor constant km 129.6 N/A
Magnet relative permeability μr 1.033
Number of coil sets Nc 2

the Fourier model and the FEM model with the following input currents

u A
j = F∗

x

km
cos

(
π

τp
x + 2π

3

)
, (2.67a)

uB
j = F∗

x

km
cos

(
π

τp
x

)
, (2.67b)

uC
j = F∗

x

km
cos

(
π

τp
x − 2π

3

)
, (2.67c)

where j ∈ {1,2} is the index of the coil set, F∗
x is the reference driving force and km

is the motor force constant. In this example motor we have km = 129.6 N/A. The
reference force is chosen as F∗

x = 1000 N. The simulation is performed along the
x-direction, in the range between 156 mm and 312 mm.
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Figure 2.7: Forces and torque produced by the Fourier model and the FEM model.

The resulting forces and torque of the Fourier model and the FEM model are
plotted in Figure 2.7. It can be seen that the outputs of the Fourier model and FEM
model are closely matched. The root mean square (rms) values of the errors of Fx ,
Fz and Ty are 0.31 N, 0.09 N and 0.01 Nm, respectively.

The simulation results have demonstrated that the Fourier modeling technique
is able to accurately capture the parasitic forces and torques in a nonideal CLM.
Furthermore, the Fourier model is analytical and has simple structure, which is at-
tractive for model-based control purpose.

However, the Fourier model requires knowledge of the exact manufacturing tol-
erances of the motor. For instance, to model the example motor in Figure 2.6, we
need to know the exact z-displacement of the coil array and the exact remanent
magnetization of each magnet. In practice, it is generally difficult to obtain these in-
formations. This problem can be addressed by using data-driven modeling methods
based on the model structure of the Fourier model. This topic will be discussed in
Chapter 3.
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Figure 2.8: Block diagram of a CLM model .

2.7 Model structure

Based on the analysis in the previous sections, we can now formulate a general
model structure of a CLM, for both the driving and non-driving directions. The
overall model structure of a CLM is depicted in Figure 2.8. The description of the
signals in Figure 2.8 is listed below.

• u ∈R2Nc is the input current vector. Here, Nc is the number of coil sets.

• wx ∈ R is the force in the x-direction, which is denoted as Fx in the previous
sections.

• wz ∈ R is the force in the z-direction, which is denoted as Fz in the previous
sections.

• wy ∈ R is the torque around the y-direction, which is denoted as Ty in the
previous sections.

• x ∈R is the position of the translator.

It can be seen that a CLM is a nonlinear multiple-input single-output (MISO) sys-
tem. In the driving direction, a CLM can be modeled as a linear dynamical system
preceded by a static nonlinearity. In the non-driving directions, there is no motion
dynamics due to the high-stiffness bearing. Therefore, the CLM can be modeled just
as a static nonlinearity.

As analyzed in Section 2.3, the forces produced by a CLM are dependent on the
input currents, the position in the driving direction, and the velocity in the driving
direction. The input-dependent and position-dependent forces are captured in the
static nonlinearity part, while the velocity-dependent force is captured in the linear
dynamics part.

2.7.1 Linear dynamics

The linear dynamics part captures the motion dynamics of the CLM in the driving
direction. Its input is the driving force wx and its output is the position x of the
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translator in the driving direction. The velocity-dependent drag force in the driving
direction can be modeled as a damping coefficient d in this linear dynamics part.
Let m be the mass of the translator, then the linear dynamics in the driving direction
can be written as

G(s) = 1

ms2 +d s
. (2.68)

This continuous-time transfer function can be discretized with a sampling period Ts

using zero-order hold. The resulting discrete-time transfer function is given by

G(q,θ) = b1q−1 +b2q−2

1+a1q−1 +a2q−2 , (2.69)

where q−1 is the delay operator with q−i x(t ) = x(t − i ) and

a1 =−1−e−
d
m Ts , a2 = e−

d
m Ts ,

b1 = m

d 2

(
d

m
Ts −1+e−

d
m Ts

)
, b2 = m

d 2

(
1−e−

d
m Ts − d

m
Ts e−

d
m Ts

)
.

Here, θ ∈ Rnθ denotes the vector of all the parameters to be identified, not only in
the linear dynamics part but also in the static nonlinearity part.

2.7.2 Static nonlinearity

The static nonlinearity part describes the relation between the input currents and
the forces and torques produced by the motor. The force components which are
position- and current-dependent are captured in this static nonlinearity part. For
ease of presentation, we will only describe the model structure of the static nonlin-
earity in the driving direction. The same model structure applies to the non-driving
directions.

Given the first-principle model structures of these force components in Sec-
tion 2.3, the static nonlinearity in the driving direction can be represented by the
following form

wx =Ψx (x,u,θ) =Φx (x,θ)Λx (u). (2.70)

Here, the functions Λx (u) and Φx (x,θ) represent the current-dependent and position-
dependent behavior of the force components, respectively.

In general, the function Λ(u) is a column vector in RnΛ which can contain the
following three components

Λ(u) =
⎡
⎣ΛLor(u)
Λrel(u)
Λpos

⎤
⎦ . (2.71)

This function describes the dependency of the force components on the input u.
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• Lorentz force: in the Lorentz force case, the force is linear with the input
current. Therefore, the current dependent function ΛLor(u) has the following
form

ΛLor(u) = [
u1 u2 . . . unu

]�
. (2.72)

• Reluctance force: the reluctance forces are represented by quadratic functions
and all cross terms as follows

Λrel(u) = [
u1u1 u1u2 . . . u2u2 u2u3 . . . unu unu

]�
. (2.73)

• Position-dependent only force: the function Λpos is used to represent the force
component which is position-dependent but does not depend on the input u.
The function Λpos can thus be represented by the unit function

Λpos = 1. (2.74)

Although this type of force component is not present in coreless linear motors,
it can be used to describe the position-dependent cogging force in ironcore
linear motors.

The force function Φx (x,θ) is a position-dependent row vector

Φx (x,θ) = [
Φx,1(x,θ) . . . Φx,nΛ (x,θ)

]
. (2.75)

It represents the position-dependent behavior of the force components. As analyzed
in the previous sections, each force function Φx,l (x,θ), with l = 1, . . . ,nΛ, can be de-
scribed by a Fourier series

Φx,l (x,θ) = fl +
nF∑

n=1

(
cl ,n cos(ωn x)+dl ,n sin(ωn x)

)
, l = 1, . . . ,nΛ, (2.76)

where nF is the number of Fourier harmonics; nΛ is the number of elements in
Λx (u); fl , cl ,n and dl ,n are the Fourier coefficients. Here, we denote ωn = nω1,
where ω1 is the fundamental frequency of the Fourier series. It should be noted that
the reluctance force is not dependent on the x-position as analyzed in Section 2.5.
Therefore, we have crel

l ,n = 0 and d rel
l ,n = 0, for all n = 1, . . . ,nF .

The static nonlinearity in the non-driving directions are modeled in the same
way. However, there is a difference in the types of forces present in each direction.
In the driving direction, the main force component is the Lorentz force. In the non-
driving directions, both Lorentz force and reluctance force are present. As a result,
the function Λ(u) in each direction can be written as follows

Λx(u) =ΛLor(u), Λz (u) =Λy (u) =
[
ΛLor(u)
Λrel(u)

]
. (2.77)

In ironcore linear motors where cogging force is present, Λx(u) also contains Λpos.
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2.8 Conclusions

In this section we have analyzed the three main force components in a nonideal
CLM, which are the Lorentz force, the reluctance force and the drag force. First-
principle modeling of Lorentz force and reluctance force using Fourier modeling
method has been presented. In order to capture the manufacturing tolerances, the
whole motor length is considered as the base Fourier period. The resulting Fourier
models have been validated by comparing their outputs to the outputs of FEM mod-
els. The results are closely matched. This demonstrates the ability of the Fourier
modeling technique to accurately model the parasitic forces and torques in a non-
ideal CLM. Furthermore, the Fourier model is analytical and has simple structure,
which is attractive for model-based control purpose.

Based on the analysis of the force components and the insights provided by the
Fourier model, a general model structure of CLMs has been formulated. This general
model structure will be utilized for identification and model-base controller design
purposes in the next chapters.



Chapter 3
Data-driven modeling of coreless
linear motors

3.1 Introduction

First-principle modeling provides an insight into the physical behavior of a linear
motor. There are first-principle modeling methods to model a linear motor with
high accuracy, such as finite element method, surface charge modeling method
and Fourier modeling method. However, first-principle modeling methods require
knowledge of the exact physical parameters of the motor, including all manufactur-
ing tolerances such as the variation in size and magnetization of each magnet, the
variation in size of each coil, the misalignment of the coil within the air gap, etc.
Unfortunately, the knowledge of the manufacturing tolerances in a linear motor is
generally not available in practice. To address this problem, instead of calculating
the parameters of the first-principle model by using the exact geometric parameters
and material properties as described in Chapter 2, we aim to identify them from
measurement data, thereby eliminating the need to know all the manufacturing
tolerances in the linear motor.

In the literature, the existing research works on identification of linear motors
have considered only the driving direction. To the best of the author’s knowledge,
there has been no research on identification of linear motors in the non-driving di-
rections. In the driving direction, identification of linear motors is typically formu-
lated as identification of the model of the force ripple as function of position, velocity
and currents. The force ripple model is usually written as a sum of basis functions
where the coefficients are to be estimated by fitting the model to measurement

Part of the content of this chapter has been published in:

• T. T. Nguyen, M. Lazar, H. Butler and P. M. J. Van den Hof, “An instrumental variable method
for closed-loop identification of coreless linear motors,” in IEEE American Control Conference
(ACC), Milwaukee, WI, 2018.
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Figure 3.1: Linear motor model in the driv-
ing direction.

Figure 3.2: Linear motor model in the z-
direction.

data. Some of the research works only consider position-dependent and velocity-
dependent force ripple [62,113]. Several methods to identify the current-dependent
force ripple has been developed in [7,99,114]. However, the contribution of the cur-
rent in each coil to the force ripple is not addressed therein. In [88, 89], a method
to identify the force function of each coil is proposed, but this is limited to linear
motors with only one set of three-phase coils. Furthermore, the above-mentioned
works in general require measurements of the driving force, which are usually not
available in real applications. In addition, the effect of the output measurement
noise on the parameter estimation has not been addressed.

In this chapter, we consider the identification of linear motors problem in both
driving and non-driving directions. Based on the analysis in Chapter 2, the models
of a CLM in the driving and non-driving directions can be represented by block
structures as shown in Figure 3.1 and Figure 3.2, respectively.

In the driving direction, a CLM can be modeled as a multiple-input single-output
(MISO) nonlinear dynamical system with electrical currents as inputs and the po-
sition of the translator in the driving direction as output. The nonlinear system
consists of a linear dynamical system preceded by a static nonlinearity which is
nonlinearly dependent both on the input currents and on the noise-free position
output as depicted in Figure 3.1. The linear dynamical system captures the mo-
tion dynamics of the translator. It describes the dynamical relation between the
driving force and the position in the driving direction. The static nonlinearity de-
scribes the position-dependent relation between the currents in the coils and the
resulting forces. It should be noted that this model structure is different from the
well known Hammerstein model structure. The static nonlinear part of this model
structure is nonlinear not only in the input but also in the noise-free output, while
the static nonlinear part of the Hammerstein model structure is nonlinear only in
the input [5, 25]. The identification methods available for the Hammerstein model
structure are therefore not directly applicable to the CLM model.

In this chapter we aim to develop an identification method which can provide a
consistent estimate of the model parameters of a CLM in the driving direction. Our
goal is to identify the parameters based on the input currents measurements and
output position measurements. The driving force measurement is in general not
available. There are two main challenges in this research objective.

Firstly, the CLM must always operate in closed-loop for safety reasons. As a re-
sult, the input is correlated with the measurement noise. Consequently, the simple
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linear least squares (LS) identification method results in a biased estimate [28, 34,
96]. In this chapter, we address this challenge by using the instrumental variable
(IV) identification framework, which has been proven to provide a consistent esti-
mate for closed-loop measurement data [35].

The second challenge is the nonlinear dependency of the static part of the CLM
model on the unknown noise-free output. The nonlinear dependency on the un-
known noise-free output makes it difficult to find an appropriate predictor model
for IV identification. The simple nonlinear autoregressive exogenous (NARX) model
structure suffers from unrealistic noise assumptions, which leads to a biased esti-
mate in the presence of output measurement noise [66]. On the other hand, the
more realistic nonlinear output error (NOE) model structure can provide a consis-
tent estimate, but it is nonlinear in the parameters and requires the global solution
of a nonconvex optimization problem, which is difficult to find. In this chapter, we
introduce a new linear-in-the-parameter predictor model, which is a modification of
the NARX model. It will be proven that the IV method using the introduced predictor
model provides a consistent estimate. The method only requires the analytical so-
lution of a simple generalized linear least squares problem. In addition, we provide
an analysis of the bias obtained by using the NARX predictor model. It is shown that
in many applications where the output measurement noise is small compared to the
magnet pole pitch of the CLM, the simple NARX predictor model, which does not
require knowledge of the statistical properties of the output measurement noise, can
provide an estimate that is very close to the true parameter. A numerical example is
presented for demonstration.

Regarding practical implementation, the new identification method is easy to
implement compared to other identification methods for linear motors, e.g. [7, 88,
89]. It is able to identify the force functions of all the coils together with the motion
dynamics of the translator from a single experiment. In addition, there is no need
to apply a constant load on the motor.

In this chapter we also consider the identification problem of CLMs in non-
driving directions. Unlike the driving direction which has an encoder for position
measurement, there is no measurement equipment in the non-driving directions in
conventional linear motors. This makes it almost impossible to identify the model of
the non-driving directions, as there is no information available in these directions.
Adding encoders is not practical as the motor is fixed in these directions due to the
high-stiffness bearing. However, the motor can still generate forces in these direc-
tions. Therefore, our solution is to add force sensors in the non-driving directions.
The CLM model in the non-driving directions can then be represented by a position-
dependent static nonlinearity, with currents as input and force as output, as shown
in Figure 3.2. It should be noted that this static nonlinearity is nonlinearly depen-
dent on the noise-free position output in the driving directions. Our objective is to
identify the parameters of this static nonlinear model based on the currents mea-
surements, force measurements and position measurements. Although the model
is static, the identification problem is not trivial due to the nonlinear dependency
of the model on the unknown noise-free position x. The IV identification method
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Figure 3.3: A linear motor control loop.

developed for the driving direction can be applied to solve this problem with a few
modifications. It will be proven that the resulting estimate is consistent. The effec-
tiveness of the method will be demonstrated in a numerical example.

The remainder of this chapter is organized as follows. An instrumental variable
method for identification of driving direction is introduced in Section 3.2. Sec-
tion 3.3 presents a method for identification of the linear motor model in the non-
driving directions. The conclusions are summarized in Section 3.4.

3.2 Identification in the driving direction

3.2.1 Problem formulation

System description

The standard control loop of a CLM is shown in Fig. 3.3. The controller consists of
two parts: a commutation block Ψ̂−1

x (w∗
x , x̂), which aims to invert the static nonlin-

earity, and a linear controller C (q) which controls the linear dynamics. The descrip-
tion of the signals is listed below:

• u(t ) ∈ Rnu : the input of the system, which is the vector of the currents in the
coils. The number of independent coils in the translator is nu .

• x(t ) ∈R: the noise-free output of the system, which is the position of the trans-
lator in the driving direction.

• xm(t ) ∈ R: the noise-corrupted output, which is the position measurement ob-
tained from the encoder.

• ex (t ) ∈ R: the output measurement noise. It is assumed that ex (t ) is a zero-
mean white noise with a symmetric probability distribution.

• wx (t ) ∈ R: an unmeasurable internal signal, which is the motor force in the
driving direction.

• x̂(t ) ∈R: an estimation of the position for commutation purpose.

• r2(t ) ∈R: the output reference.
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• r1(t ) ∈Rnu : the additional input excitation signal.

The input signal u and the output measurement xm are known. The signals wx and
x cannot be measured. The position estimation x̂(t ) is chosen as the output of the
predictor (3.7).

Mathematically, the data generating system is given by the following relations

S :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xm(t ) = x(t )+ex (t ),
x(t ) =G0(q)wx (t ),
wx (t ) =Ψx0(x(t ),u(t )),
u(t ) = r1(t )+ Ψ̂−1

x (w∗
x (t ), x̂(t )),

w∗
x (t ) =C (q)(r2(t )−xm(t )).

(3.1)

The input-output relation of the linear motor is given by

xm(t ) =G0(q)Ψx0(x(t ),u(t ))+ex (t ). (3.2)

Here, t ∈ N denotes the time instance and q−1 is the delay operator with q−i x(t ) =
x(t − i ). The controller C (q) is chosen such that there is no direct feedthrough from
xm(t ) to u(t ), which implies that u(t ) and ex (t ) are uncorrelated. It follows that x(t )
and ex (t ) are also uncorrelated. It is assumed that the controller C (q) is known.

Parameterized model structure

The parameterized model structure of the linear motor is chosen based on the anal-
ysis in Section 2.7. The linear dynamics G0(q) is described by a discrete-time linear
transfer function

G0(q) =G(q,θ0) =
∑nb

k=1 b0
k q−k

1+∑na
j=1 a0

j q− j
, (3.3)

where na and nb are the orders of the denominator and numerator, respectively.
The noise-free output can then be written as

x(t ) =−
na∑
j=1

a0
j x(t − j )+

nb∑
k=1

b0
k wx (t −k). (3.4)

As analyzed in Section 2.7.2, equation (2.70), the static nonlinearity Ψx0(x(t ),u(t ))
is parameterized as follows

wx (t ) =Ψx0(x(t ),u(t ))

=Ψx (x(t ),u(t ),θ0)

=
nΛ∑
l=1

((
f 0

l +
nF∑

n=1
c0

l ,n cos(ωn x(t ))+
nF∑

n=1
d 0

l ,n sin(ωn x(t ))

)
Λl (u(t ))

)
, (3.5)

where the function Λ(u) is given by (2.71); nΛ is the number of elements in Λ(u);
nF is the number of harmonics in the Fourier model. Here, θ0 denotes the true
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parameter vector of the system. Substituting (3.4) and (3.5) into system (3.1), the
input-output relation of the linear motor can be written in the following form

xm(t ) = −
na∑
j=1

a0
j x(t − j )+

nb∑
k=1

b0
k wx (t −k)+ex (t )

= −
na∑
j=1

a0
j x(t − j )+

nb∑
k=1

b0
k

nΛ∑
l=1

f 0
l Λl (u(t −k))

+
nb∑

k=1
b0

k

nΛ∑
l=1

nF∑
n=1

c0
l ,n cos(ωn x(t −k))Λl (u(t −k))

+
nb∑

k=1
b0

k

nΛ∑
l=1

nF∑
n=1

d 0
l ,n sin(ωn x(t −k))Λl (u(t −k))+ex (t ). (3.6)

Here, a0
j , b0

k , f 0
l , c0

l ,n and d 0
l ,n are the true parameters of the system. It is noted

that (3.6) is a NOE model structure which is nonlinear in both the input u and the
noise-free output x. Furthermore, the model (3.6) is bilinear in the parameters due
to the products b0

k f 0
l , b0

k c0
l ,n and b0

k d 0
l ,n .

Problem statement

The identification problem is formulated as follows: given N samples of input-
output measurements {u(t ), xm(t )}N

t=1, identify the unknown parameters

a = [a1 . . . ana ]�, b = [b1 . . . bnb ]�, f = [ f1 . . . fnΛ ]�,

c = [c1,1 . . . cnΛ,nF ]�, d = [d1,1 . . . dnΛ,nF ]�.

The internal signal w(t ) is unavailable.
The considered identification problem has two main challenges. Firstly, the iden-

tification experiments must be performed in closed-loop for safety reasons. As a
result, the input is correlated with the measurement noise. It should be noted that
the input u(t ) is uncorrelated with ex (t ) as there is no direct feed-through in the
controller, but it is correlated with the measurement noise at previous time instants
ex (t −1), ex (t −2), etc. Consequently, the simple linear LS identification method re-
sults in a biased estimate [28,34,96]. This challenge will be addressed using the IV
identification framework, which has been proven to provide a consistent estimate
for closed-loop measurement data [35,96].

The second challenge is the nonlinear dependency of the static nonlinear part
of the CLM model on the unknown noise-free output, as described in (3.6). The
model structure (3.6) is different from the well known Hammerstein model struc-
ture [5, 25, 54, 107] in that its static part is nonlinearly dependent both on the in-
puts and on the noise-free output, while the static part of a Hammerstein model is
nonlinearly dependent only on the inputs. The identification methods available for
Hammerstein systems are therefore not applicable. The nonlinear dependency of
the model structure (3.1) on the unknown noise-free output makes it challenging to
find an appropriate predictor for IV identification.
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Using the simple NARX predictor model structure, which will be described in
(3.14), the noise-corrupted output enters the predictor nonlinearly, which can result
in a biased estimate. On the other hand, the more realistic NOE predictor model is
nonlinear in the parameters and thus requires solving a nonconvex optimization
problem, which is generally difficult.

In this chapter, we employ the IV method, together with a new linear-in-the-
parameter predictor, which is a modification of the NARX model. We will prove that
the IV method together with the new predictor provide a consistent estimate of the
parameters. The method only requires the analytical solution of a generalized linear
least squares problem, which is simple to compute.

3.2.2 Instrumental variable method

The IV framework

Consider a linear-in-the-parameter predictor of the form

x̂(t ,θ) =ϕ�(t )θ, (3.7)

where θ ∈Rnθ is the parameter vector, ϕ(t ) ∈Rnθ is the regression vector and x̂(t ,θ) ∈
R is the predicted output. It should be noted that the NOE model (3.6) is nonlinear-
in-the-parameter and thus cannot be written in the linear form (3.7). Therefore, in
order to apply the IV framework, we have to employ other predictor models which
are linear in the parameters as will be described in Section 3.2.3.

The parameter vector θ can be estimated using the simple LS solution

θ̂LS =
(

1

N

N∑
t=1

ϕ(t )ϕ(t )�
)−1 (

1

N

N∑
t=1

ϕ(t )xm(t )

)
, (3.8)

where N is the data length. However, for closed-loop data in which the input is
correlated with the output measurement noise, the LS estimate is biased [28,34,96].
As an alternative, we can use the IV estimate, which is the generalized version of
the LS estimate. The IV estimate is given by

θ̂IV =
(

1

N

N∑
t=1

ζ(t )ϕ(t )�
)−1 (

1

N

N∑
t=1

ζ(t )xm(t )

)
, (3.9)

where ζ(t ) ∈ Rnθ is the instrumental vector [35]. The selection of the instrumental
vector ζ(t ) will be discussed later in this section. It can be seen that the IV estimate is
the analytical solution of a generalized linear least squares problem and is therefore
attractive from a computational perspective.

The IV estimate is said to be consistent if θ̂IV → θ0 with probability 1 as N →
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∞ [35]. Let us analyze the consistency of the IV estimate. We have

θ̂IV −θ0 =
(

1

N

N∑
t=1

ζ(t )ϕ(t )�
)−1 (

1

N

N∑
t=1

ζ(t )xm(t )

)

−
(

1

N

N∑
t=1

ζ(t )ϕ(t )�
)−1 (

1

N

N∑
t=1

ζ(t )ϕ(t )�
)
θ0

=
(

1

N

N∑
t=1

ζ(t )ϕ(t )�
)−1 (

1

N

N∑
t=1

ζ(t )
(
xm(t )−ϕ(t )�θ0

))

=
(

1

N

N∑
t=1

ζ(t )ϕ(t )�
)−1 (

1

N

N∑
t=1

ζ(t ) (xm(t )− x̂(t ,θ0))

)
(3.10)

As a result, the IV estimate is consistent if the following two conditions are satisfied

Ē[ζ(t )ϕ(t )�] is nonsingular, (3.11)

Ē[ζ(t )(xm(t )− x̂(t ,θ0))] = 0. (3.12)

Here, the notation Ē[·] = limN→∞ 1
N

∑N
t=1E[·] is adopted from the prediction error

framework [58]. Condition (3.11) is satisfied if the system is sufficiently excited and
ζ(t ) is well correlated with ϕ(t ). To satisfy condition (3.12), the instrumental vec-
tor ζ(t ) must be uncorrelated with the measurement noise and the predictor x̂(t ,θ)
should be selected appropriately. The selection of the predictor will be discussed in
Section 3.2.3.

Instrumental vector selection

The instrumental vector ζ(t ) should be selected such that it is uncorrelated with the
output measurement noise ex (t −k), with k = 1, . . . ,nb , and well correlated with ϕ(t ).
In this chapter, we choose the instrumental vector as the noise-free version of ϕ(t ),
obtained by simulating the noise-free model as shown in Figure 3.4. The noise-free
model can be described as follows

S̊ :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x̊(t ) =G(q, θ̂)ẘx (t ),
ẘx (t ) =Ψx (x̊(t ), ů(t ), θ̂),
ů(t ) = r1(t )+Ψ−1

x (ẘ∗
x (t ), x̊(t ), θ̂),

ẘ∗
x (t ) =C (q)(r2(t )− x̊(t )).

(3.13)

Here, θ̂ is an estimate of θ0, which can be obtained by first-principle modeling using
nominal physical parameters provided by the manufacturer. The signal r1(t ) and
r2(t ) here are the same as those used in the real experiment, in order to make ζ(t )
and ϕ(t ) well correlated. It is obvious that ζ(t ) is uncorrelated with ex (t −k), for all
k = 1, . . . ,nb .
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Figure 3.4: The noise-free model for generating instrumental vector.

3.2.3 Predictor models

In this section we discuss the selection of the predictor for the IV method. This
is a challenging problem due to the nonlinear dependency of the system on the
unknown noise-free output. We will show that the simple NARX model results in
a biased estimate, although the bias is negligible in many applications. A bias-
corrected predictor is then introduced and consistency of the resulting IV estimate
is proven.

NARX predictor

Let us consider the NARX predictor given by

x̂NARX(t ,θ) = −
na∑
j=1

a j xm(t − j )+
nb∑

k=1
bk

nΛ∑
l=1

flΛl (u(t −k))

+
nb∑

k=1
bk

nΛ∑
l=1

nF∑
n=1

cl ,n cos(ωn xm(t −k))Λl (u(t −k))

+
nb∑

k=1
bk

nΛ∑
l=1

nF∑
n=1

dl ,n sin(ωn xm(t −k))Λl (u(t −k))

=ϕ�
NARX(t )θ, (3.14)

where θ ∈Rnθ is the parameter vector

θ = [a1 . . . ana b1 f1 . . . bnb fnΛ

b1c1,1 . . . bnb cnΛ,nF b1d1,1 . . . bnb dnΛ,nF ]�, (3.15)

and ϕNARX(t ) ∈Rnθ is the NARX regression vector given by

ϕNARX(t )

= [−xm(t −1) . . . −xm(t −na)

Λ1(u(t −1)) . . . ΛnΛ (u(t −nb))

cos(ω1xm(t −1))Λl (u(t −1)) . . . cos(ωnF xm(t −k))ΛnΛ (u(t −nb))

sin(ω1xm(t −1))Λl (u(t −1)) . . . sin(ωnF xm(t −k))ΛnΛ (u(t −nb))]�. (3.16)
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We have nθ = na +nbnΛ+2nbnΛnF .
It should be noted that the NARX model (3.14) is written in a linear-in-the-

parameter form by using the overparameterization technique, which transforms a
bilinear-in-the-parameter model to a linear-in-the-parameter model by replacing ev-
ery crossproduct of parameters with new independent parameters [5]. When the
new parameters have been identified, the original parameters can be obtained by
performing singular value decomposition as explained in [5].

In addition, it is important to note that this parameterization is not unique. Any
set of parameter vectors ã = a, b̃ = βb, f̃ = β−1 f , c̃ = β−1c and d̃ = β−1d , where β is
a nonzero scalar, provides identical input-output relation as the one in (3.14). To
have a unique parameterization, a common approach is to fix the first element of b
to a constant [5,54,74].

In what follows we will analyze the consistency of the IV estimate obtained by
using the NARX predictor. For this purpose we will calculate the term in condi-
tion (3.12). By substituting xm(t ) = x(t )+ex (t ) and using trigonometric identities we
have

cos(ωn xm(t )) = cos(ωn x(t ))cos(ωnex (t ))− sin(ωn x(t ))sin(ωnex (t )), (3.17)

sin(ωn xm(t )) = sin(ωn x(t ))cos(ωnex (t ))+cos(ωn x(t ))sin(ωnex (t )). (3.18)

Consequently, subtracting x̂NARX(t ,θ0) from xm(t ) results in

xm(t )− x̂NARX(t ,θ0)

=
nb∑

k=1
b0

k

nΛ∑
l=1

nF∑
n=1

c0
l ,n cos(ωn x(t −k))Λl (u(t −k)) [1−cos(ωnex (t −k))]

+
nb∑

k=1
b0

k

nΛ∑
l=1

nF∑
n=1

d 0
l ,n sin(ωn x(t −k))Λl (u(t −k)) [1−cos(ωnex (t −k))]

+
nb∑

k=1
b0

k

nΛ∑
l=1

nF∑
n=1

c0
l ,n sin(ωn x(t −k))Λl (u(t −k))sin(ωnex (t −k))

−
nb∑

k=1
b0

k

nΛ∑
l=1

nF∑
n=1

d 0
l ,n cos(ωn x(t −k))Λl (u(t −k))sin(ωnex (t −k))

+
na∑
j=1

a0
j ex (t − j )+ex (t ). (3.19)

To analyze condition (3.12), let us calculate the expected values of cos(ωnex (t −k))
and sin(ωnex (t −k)). The characteristic function of ex (t ) is defined as [95]

φex (α) := E[eiαex (t )], where α ∈R. (3.20)

We have the following proposition.

Proposition 3.2.1. If ex (t ) is a zero-mean white noise with a symmetric probability
distribution then

E[cos(ωnex (t ))] =φex (ωn), E[sin(ωnex (t ))] = 0. (3.21)
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Proof. Using Euler’s formula we have

φex (ωn) = E[cos(ωnex (t ))]+ iE[sin(ωnex (t ))]. (3.22)

Since ex (t ) is a zero-mean white noise with a symmetric probability distribution, the
characteristic function φex (ωn) is real-valued [95]. By equating the real part and the
imaginary part of the two sides of equation (3.22), the proposition is proven.

Now let us substitute (3.19) into the term in condition (3.12). We note that
ex (t−k) is uncorrelated with x(t−k), u(t−k) and ζ(t ), for all k = 1, . . . ,nb . As a result,
using the fact that

E[χ1χ2] = E[χ1]E[χ2] (3.23)

if χ1 and χ2 are independent variables, and using the result of Proposition 3.2.1, it
follows that

Ē[ζ(t )(xm(t )− x̂NARX(t ,θ0))]

=
nb∑

k=1
b0

k

nΛ∑
l=1

nF∑
n=1

c0
l ,n

(
Ē [ζ(t )cos(ωn x(t −k))Λl (u(t −k))]

(
1−φex (ωn)

))
+

nb∑
k=1

b0
k

nΛ∑
l=1

nF∑
n=1

d 0
l ,n

(
Ē [ζ(t )sin(ωn x(t −k))Λl (u(t −k))]

(
1−φex (ωn)

))
�= 0. (3.24)

Therefore, condition (3.12) is not satisfied. We conclude that the IV method using
the NARX predictor does not satisfy the condition for consistency.

Bias-corrected predictor

In this section we introduce a simple bias-correction for the NARX model. Let us
define the bias-correction factors

ρn = 1

E[cos(ωnex (t ))]
= 1

φex (ωn)
, n = 1, . . . ,nF . (3.25)

Assume that φex (ωn) is known, we introduce the following bias-corrected predictor

x̂bc(t ,θ) = −
na∑
j=1

a j xm(t − j )+
nb∑

k=1
bk

nΛ∑
l=1

flΛl (u(t −k))

+
nb∑

k=1
bk

nΛ∑
l=1

nF∑
n=1

cl ,n cos(ωn xm(t −k))Λl (u(t −k))ρn

+
nb∑

k=1
bk

nΛ∑
l=1

nF∑
n=1

dl ,n sin(ωn xm(t −k))Λl (u(t −k))ρn

=ϕ�
bc(t )θ, (3.26)
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where θ ∈ Rnθ is the parameter vector defined in (3.15) and ϕbc(t ) ∈ Rnθ is the bias-
corrected regression vector given by

ϕ�
bc(t )

= [−xm(t −1) . . . −xm(t −na)

Λ1(u(t −1)) . . . ΛnΛ (u(t −nb))

cos(ω1xm(t −1))Λ1(u(t −1))ρ1 . . . cos(ωnF xm(t −nb))ΛnΛ (u(t −nb))ρnF

sin(ω1xm(t −1))Λ1(u(t −1))ρ1 . . . sin(ωnF xm(t −nb))ΛnΛ (u(t −nb))ρnF ].
(3.27)

It can be seen that the proposed bias-corrected predictor preserves the linear-in-the-
parameter property. We will now show that the IV method using the bias-corrected
predictor results in a consistent estimate.

Theorem 3.2.2. The IV estimate (3.9), with ζ(t ) and ϕ(t ) satisfy the following condi-
tions

• condition (3.11) holds,

• ζ(t ) is uncorrelated with ex (t −k), for all k = 1, . . . ,nb ,

• ϕ(t ) is chosen equal to ϕbc(t ) given by (3.27),

is consistent.

Proof. Let us consider condition (3.12). Due to (3.17) and (3.18), subtracting
x̂bc(t ,θ0) in (3.26) from xm(t ) in (3.6) results in

xm(t )− x̂bc(t ,θ0)

=
nb∑

k=1
b0

k

nΛ∑
l=1

nF∑
n=1

c0
l ,n cos(ωn x(t −k))Λl (u(t −k))

[
1−cos(ωnex (t −k))ρn

]
+

nb∑
k=1

b0
k

nΛ∑
l=1

nF∑
n=1

d 0
l ,n sin(ωn x(t −k))Λl (u(t −k))

[
1−cos(ωnex (t −k))ρn

]
+

nb∑
k=1

b0
k

nΛ∑
l=1

nF∑
n=1

c0
l ,n sin(ωn x(t −k))Λl (u(t −k))sin(ωnex (t −k))ρn

−
nb∑

k=1
b0

k

nΛ∑
l=1

nF∑
n=1

d 0
l ,n cos(ωn x(t −k))Λl (u(t −k))sin(ωnex (t −k))ρn

+
na∑
j=1

a0
j ex (t − j )+ex (t ). (3.28)

Note that for all k = 1, . . . ,nb , we have that ex (t − k) is uncorrelated with x(t − k),
u(t −k) and ζ(t ). Therefore, by substituting (3.28) into the term in condition (3.12)
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and using (3.23) and Proposition 3.2.1 we have

Ē[ζ(t )(xm(t )− x̂bc(t ,θ0))]

=
nb∑

k=1
b0

k

nΛ∑
l=1

nF∑
n=1

c0
l ,n

(
Ē [ζ(t )cos(ωn x(t −k))Λl (u(t −k))]

(
1−φex (ωn)ρn

))
+

nb∑
k=1

b0
k

nΛ∑
l=1

nF∑
n=1

d 0
l ,n

(
Ē [ζ(t )sin(ωn x(t −k))Λl (u(t −k))]

(
1−φex (ωn)ρn

))
= 0. (3.29)

Therefore, condition (3.12) is satisfied. Given that condition (3.11) is also satisfied,
the IV estimate using the bias-corrected predictor (3.26) is consistent.

It is noted that the bias-corrected predictor requires knowledge of the probability
distribution of the output measurement noise. For example, the two most common
types of probability distribution of measurement noise are the normal (or Gaussian)
distribution and the uniform distribution.

• If the measurement noise is normally distributed with zero mean and variance
σ2, which is common in practice, then the bias-correction factors are

ρnormal
n = 1

φnormal
ex

(ωn)
= e

ω2
nσ2

2 . (3.30)

• If the measurement noise is uniformly distributed on the interval [−η,η] then
the bias-correction factors are

ρuniform
n = 1

φuniform
ex

(ωn)
= ωnη

sin(ωnη)
. (3.31)

However, it will be shown in later in this section that in many applications, it is
possible to obtain an estimate that is very close to the true parameter just by using
the simple NARX predictor, which does not require knowledge of the probability
distribution of the output measurement noise.

In practice, the measurement noise may not be a zero-mean white noise with
a symmetric probability distribution as assumed. This noise model mismatch can
lead to inconsistency of the estimation. This is a well known problem for ARX-type
predictors which requires further research [58].

Relation between the NARX IV estimate and the bias-corrected IV estimate

Comparing the NARX regression vector ϕNARX(t ) in (3.16) and the bias-corrected
regression vector ϕbc(t ) in (3.27) we have

ϕbc(t ) =ΩϕNARX(t ), (3.32)
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where Ω ∈Rnθ×nθ is the diagonal bias-correction matrix

Ω= diag(1, . . . ,1,ρ1, . . . ,ρnF ,ρ1, . . . ,ρnF ). (3.33)

From (3.9) and (3.32), it follows that

θ̂bc
IV =Ω−1θ̂NARX

IV . (3.34)

Therefore, the bias-corrected IV estimate can be obtained simply by multiplying the
NARX IV estimate by Ω−1.

Analysis of the bias in NARX IV

Let us calculate the bias of the IV estimate obtained using the NARX predictor. From
Theorem 3.2.2, we know that θ̂bc

IV → θ0 with probability 1 as N →∞. Consequently,
it follows from (3.34) that

θ̂NARX
IV →Ωθ0 with probability 1 as N →∞. (3.35)

Therefore, as N →∞, the bias is

θ̂NARX
IV −θ0 → (Ω− I )θ0 = Γθ0, (3.36)

where I is the identity matrix and

Γ= diag(0, . . . ,0,ρ1 −1, . . . ,ρnF −1,ρ1 −1, . . . ,ρnF −1). (3.37)

It is observed from (3.30) and (3.31) that if the variance of the output measurement
noise is small compared to the base Fourier period then the factors ρn are very close
to 1. For example, if the measurement noise is white Gaussian noise with variance
σ = 0.01τp , where τp is the magnet pole pitch of the CLM, and the Fourier period
is 2τp , then ρnormal

1 − 1 = 5× 10−4. In high-precision applications, the magnet pole
pitch is usually in the mm range, while the measurement noise is usually in the
μm range, making (ρn −1) very small. Consequently, the bias is negligible and we
can thus safely use the NARX model as the predictor model. The knowledge of the
probability distribution of the measurement noise is therefore not required in this
case.

3.2.4 Algorithm

The main steps of the IV algorithm for identification of CLMs in the driving direction
are summarized below.

Algorithm 3.2.3 (IV algorithm for driving direction).

1. Perform experiment and collect N samples of input-output measurement data
{u(t ), xm(t )}N

t=1.
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2. Construct the regression vector ϕ(t ) using (3.16) (NARX) or (3.27) (bias-correc-
ted).

3. Perform simulation with the noise-free model (3.13), using the same signals r1(t )
and r2(t ) as used in the experiment, then construct the instrumental vector ζ(t )
as the noise-free version of the regression vector ϕ(t ).

4. Calculate the IV estimate using (3.9).

3.2.5 Simulation results

In this section, a numerical example is presented to verify the performance of the
proposed IV method. Assume that we have a CLM with three-phase coils A, B, C as
shown in Fig. 1.2. The coils are connected in star configuration, which implies that
the sum of the three currents is zero. Therefore, we actually only have two control
inputs uA and uB .

In the driving direction, the Lorentz force is the main force component in the
static nonlinearity. It follows that

Λ(u) =ΛLor(u) =
[

uA

uB

]
. (3.38)

In the ideal case, the force function Φx A(x) and ΦxB (x) only contains the first order
harmonics ω1 = π

τp
, where τp = 0.04m is the magnet pole pitch. In reality, however,

there are also other harmonic components due to manufacturing tolerances. In this
example, it is assumed that there is a higher-order harmonic component ω2 = 2ω1.
Consequently, Φx (x) can be written as

Φx (x) = [
Φx A(x) ΦxB (x)

]= [∑2
n=1

(
cA,n cos(ωn x)+dA,n sin(ωn x)

)∑2
n=1

(
cB ,n cos(ωn x)+dB ,n sin(ωn x)

)]� . (3.39)

Here, Φx A(x),ΦxB (x) ∈ R and Φx (x) ∈ R1×2. As a result, the force produced by the
motor in the driving direction can be written as

wx =
[∑2

n=1

(
cA,n cos(ωn x)+dA,n sin(ωn x)

)∑2
n=1

(
cB ,n cos(ωn x)+dB ,n sin(ωn x)

)]�[
uA

uB

]
. (3.40)

The linear dynamical part is a mass-damper system which has the following discrete-
time transfer function

G(q,θ) = b1q−1 +b2q−2

1+a1q−1 +a2q−2 . (3.41)

The sampling frequency of the system is Fs = 10 kHz. We fix b1 = 1× 10−7. The
true parameters of the system are given in Table 3.1. The reference signal r2(t ) is
generated as a consecutive sequence of random third-order motion profiles in the
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range [0m,0.4m]. The input excitation signal is chosen as r1(t ) =∑100
n=1 pn sin(t +ψn),

where pn and ψn are random amplitudes and phase shifts. The output measurement
noise is a zero-mean white Gaussian noise with standard deviation σex = 5×10−6 m.
The signal to noise ratio is 90 dB.

The system parameters are estimated from closed-loop data of length N = 2×106.
A Monte-Carlo simulation of 150 runs is performed. The results are summarized in
Table 3.1. It is observed that there is no significant difference between the NARX
IV method and the bias-corrected IV method, as the noise variance is small. Both
methods give unbiased estimates. However, in spite of the large number of data,
the standard deviations of b and the Fourier coefficients c and d are still quite large.
How to improve the statistical efficiency of the method needs further research.

Table 3.1: Mean and standard deviation of 150 estimated mod-
els

Para- True NARX IV Bias-corrected IV
meter value

a1 −1.9950 −1.9950±0.0001 −1.9950±0.0001
a2 0.9950 0.9950±0.0001 0.9950±0.0001
b̄2 0.9983 1.0230±0.1881 1.0230±0.1881

cA,1 0 −0.0032±0.2716 −0.0032±0.2716
cA,2 −0.6988 −0.6965±0.1340 −0.6965±0.1340
cB ,1 −9.0781 −9.0421±0.8498 −9.0421±0.8498
cB ,2 −0.2745 −0.2767±0.1126 −0.2767±0.1126
dA,1 7.8619 7.8475±0.7323 7.8475±0.7323
dA,2 −0.3694 −0.3503±0.1082 −0.3503±0.1082
dB ,1 −4.5391 −4.5189±0.5322 −4.5189±0.5322
dB ,2 0.4592 0.4598±0.1288 0.4598±0.1288

Note: b̄2 = b2 ×107.

The Bode diagrams of the linear dynamics of true system and the estimated
models are plotted in Figure 3.5. It can be seen that the estimated models are very
close to the true system. The Bode diagrams of the 150 estimated models obtained
using the bias-corrected IV method are plotted in Figure 3.6.

Figure 3.7 shows the force produced by the true system model and the estimated
model when three-phase sinusoidal current waveforms are applied to the coils:

uA = up cos

(
ω1x + 2π

3

)
, uB = up cos(ω1x) , (3.42)

where up = 6.4 A is the amplitude of the current. The resulting forces are closely
matched. The maximum force error between the true system and the estimated
model is about 0.46%. The forces produced by the 150 estimated models obtained
using the bias-corrected IV method are plotted in Figure 3.8. It is observed from
Figure 3.6 and Figure 3.8 that the variance of the estimated models is high.
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Figure 3.5: Bode diagrams of the true system and the estimated model.

Figure 3.6: Bode diagrams of the true system (red) and the 150 estimated models obtained
using the bias-corrected IV method (green).
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Figure 3.7: Forces produced by the true system and the estimated model.

Figure 3.8: Forces produced by the true system (red) and the 150 estimated model obtained
using the bias-corrected IV method (green).

The LS estimation (3.8) is also tested but the resulting estimate is very far from
the true parameter, due to the correlation between the measurement noise and the
inputs, and therefore is not shown here.

Discussion

It is observed that the statistical efficiency of the method is low. In spite of the high
signal to noise ratio and the large amount of data, the variances of b, c and d are
high. In this example, we have to simulate with low measurement noise variance
because when we increase the noise variance, it takes a very large amount of data
to get a decent estimate of b, c and d .
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A possible cause of this low statistical efficiency is the huge difference in the
range of a compared to the range of bc and bd . The absolute values of bk cl ,n and
bk dl ,n are about 107 times smaller than those of a j . Consequently, a small relative
error in the estimate of a can cause a huge relative error in the estimates of bc
and bd . This makes the estimates of bk cl ,n and bk dl ,n very sensitive to noise and
disturbance. This problem causes difficulty in estimating the parameters of a real
CLM as will be discussed in Chapter 7. In our experimental setup, the situation is
even worse because the mass of the real CLM therein is higher than the mass of the
linear motor in this example. This causes the absolute values of bc and bd to be
even smaller, about 109 times smaller than the absolute values of a. One alternative
solution for this problem will be discussed in Chapter 7.

3.3 Identification in the non-driving directions

In order to identify the model of a CLM in the non-driving directions, it is necessary
to have measurement information in these directions. As the motor hardly moves in
these directions, using encoders or other position sensors is not practical. However,
the motor can still generate forces in these directions. Therefore, our solution is to
add force sensors in the non-driving directions. Our aim is to identify the relation
between the input currents and the force produced in non-driving directions. Al-
though there is no dynamics involved, the identification problem is not trivial due
to the nonlinear dependency of the model on the unknown noise-free position x in
the driving direction. The IV identification method developed in Section 3.2 for the
driving direction can be applied to solve this problem with a few modifications as
described below.

For ease of presentation, we present the method only for the z-direction. The
same method applies to other non-driving directions.

3.3.1 Problem formulation

System description

The control loop of a CLM is depicted in Figure 3.9. In addition to the signals in the
driving direction described in Section 3.2.1, the signals in the z-direction are listed
below:

• wz (t ) ∈R: the noise-free output force in the z-direction.

• wzm(t ) ∈ R: the noise-corrupted output force measurement obtained from the
force sensor.

• ew (t ) ∈ R: the output force measurement noise. It is assumed that ew (t ) is a
zero-mean white noise.
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Figure 3.9: A linear motor control loop.

The data generating system is the same as in (3.1) with the addition of the relations
in the z-direction

S :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xm(t ) = x(t )+ex (t ),
wzm(t ) = wz (t )+ew (t ),
x(t ) =G0(q)wx (t ),
wx (t ) =Ψx0(x(t ),u(t )),
wz (t ) =Ψz0(x(t ),u(t )),
u(t ) = r1(t )+ Ψ̂−1

x (w∗
x (t ), x̂(t )),

w∗
x (t ) =C (q)(r2(t )−xm(t )).

(3.43)

The input-output relation of the linear motor in the z-direction is given by

wzm(t ) =Ψx0(x(t ),u(t ))+ew (t ). (3.44)

Parameterized model structure

The model structure is chosen based on the analysis in Section 2.7. The static non-
linearity Ψz0(x(t ),u(t )) is parameterized as follows

wz (t ) =Ψz0(x(t ),u(t ))

=Ψz (x(t ),u(t ),θ0)

=
nΛ∑
l=1

(
f 0

l +
nF∑

n=1
c0

l ,n cos(ωn x(t ))+
nF∑

n=1
d 0

l ,n sin(ωn x(t ))

)
Λl (u(t )), (3.45)

where nΛ is the number of elements in Λ(u) and nF is the number of harmonics in
the Fourier model; θ0 ∈Rnθ denotes the true parameter vector; f 0

l ,c0
l ,n ,d 0

l ,n ∈R denote
the true parameters of the system. Substituting (3.45) into (3.44), the input-output
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relation of the linear motor in the z-direction can be written in the following form

wzm(t ) =
nΛ∑
l=1

f 0
l Λl (u(t ))+

nΛ∑
l=1

nF∑
n=1

c0
l ,n cos(ωn x(t ))Λl (u(t ))

+
nΛ∑
l=1

nF∑
n=1

d 0
l ,n sin(ωn x(t ))Λl (u(t ))+ew (t ). (3.46)

The model structure (3.46) is nonlinear in the noise-free position x and the input u.
In addition, it is observed that the model structure (3.46) is linear in the parameters.

Problem statement

The identification problem is formulated as follows: given N samples of input-
output measurements {u(t ), xm(t ), wzm(t )}N

t=1, identify the unknown parameters

f = [ f1 . . . fnΛ ]�, c = [c1,1 . . . cnΛ,nF ]�, d = [d1,1 . . . dnΛ,nF ]�.

Although the model structure (3.46) is static and linear in the parameters, the
identification problem is not trivial due to the nonlinear dependency of the model
on the unknown noise-free position x in the driving direction. The IV identification
method developed in Section 3.2 for the driving direction can be applied to solve
this problem with a few modifications as will be described in the next sections.

3.3.2 Instrumental variable method

Consider a linear-in-the-parameter predictor of the form

ŵz (t ,θ) =ϕ�(t )θ, (3.47)

where θ ∈Rnθ is the parameter vector, ϕ(t ) ∈Rnθ is the regression vector and ŵz (t ,θ) ∈
R is the predicted output.

Similar to Section 3.2, we employ the IV method for identification of the CLM
model in the non-driving directions. The IV estimate is given by

θ̂IV =
(

1

N

N∑
t=1

ζ(t )ϕ(t )�
)−1 (

1

N

N∑
t=1

ζ(t )wz (t )

)
. (3.48)

Using similar analysis as in (3.10), it follows that the IV estimate is consistent if the
following two conditions are satisfied

Ē[ζ(t )ϕ(t )�] is nonsingular, (3.49)

Ē[ζ(t )(wzm(t )− ŵz (t ,θ0))] = 0. (3.50)

Condition (3.49) is satisfied if the system is sufficiently excited and ζ(t ) is well cor-
related with ϕ(t ). To satisfy condition (3.50), the instrumental vector ζ(t ) must be
uncorrelated with the measurement noise and the predictor ŵz (t ,θ) should be se-
lected appropriately. The instrumental vector ζ(t ) can be chosen as the noise-free
version of ϕ(t ), obtained by simulating the noise-free model similar to Section 3.2.2.
The selection of the predictor will be discussed in the next section.
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3.3.3 Predictor model

In order to apply the IV framework, a linear-in-the-parameter predictor is required.
In this section, we analyze the consistency property of the NARX IV predictor and
introduce a bias-corrected predictor, which will be proven to provide a consistent
estimate.

NARX predictor

Let us consider the NARX predictor given by

ŵzNARX(t ,θ) =
nΛ∑
l=1

flΛl (u(t ))+
nΛ∑
l=1

nF∑
n=1

cl ,n cos(ωn xm(t ))Λl (u(t ))

+
nΛ∑
l=1

nF∑
n=1

dl ,n sin(ωn xm(t ))Λl (u(t ))

=ϕ�
NARX(t )θ, (3.51)

where θ ∈Rnθ is the parameter vector

θ = [ f1 . . . fnΛ c1,1 . . . cnΛ,nF d1,1 . . . dnΛ,nF ]�, (3.52)

and ϕNARX(t ) ∈Rnθ is the NARX regression vector given by

ϕNARX(t ) = [Λ1(u(t )) . . . ΛnΛ (u(t ))

cos(ω1xm(t ))Λ1(u(t )) . . . cos(ωnF xm(t ))ΛnΛ (u(t ))

sin(ω1xm(t ))Λ1(u(t )) . . . sin(ωnF xm(t ))ΛnΛ (u(t ))]�. (3.53)

We have nθ = nΛ(1+2nF ).
Similar to Section 3.2.3, it can be proven that the NARX predictor (3.51) results

in a biased estimate. Due to (3.17) and (3.18), subtracting (3.51) from (3.46)
results in

wzm(t )− ŵzbc(t ,θ0) =
nΛ∑
l=1

nF∑
n=1

c0
l ,n cos(ωn x(t ))Λl (u(t )) [1−cos(ωnex (t ))]

+
nΛ∑
l=1

nF∑
n=1

d 0
l ,n sin(ωn x(t ))Λl (u(t )) [1−cos(ωnex (t ))]

+
nΛ∑
l=1

nF∑
n=1

c0
l ,n sin(ωn x(t ))Λl (u(t ))sin(ωnex (t ))ρn

−
nΛ∑
l=1

nF∑
n=1

d 0
l ,n cos(ωn x(t ))Λl (u(t ))sin(ωnex (t ))ρn

+ew (t ). (3.54)

We note that ex (t ) is uncorrelated with x(t ), u(t ) and ζ(t ). Furthermore, ex (t ) and
ew (t ) are white and zero-mean. Therefore, by substituting (3.54) into condition
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(3.50) and using (3.23) and Proposition 3.2.1 we have

Ē[ζ(t )(wzm(t )− ŵzbc(t ,θ0))]

=
nΛ∑
l=1

nF∑
n=1

c0
l ,n

(
Ē [ζ(t )cos(ωn x(t ))Λl (u(t ))]

(
1−φex (ωn)

))
+

nΛ∑
l=1

nF∑
n=1

d 0
l ,n

(
Ē [ζ(t )sin(ωn x(t ))Λl (u(t ))]

(
1−φex (ωn)

))
�= 0. (3.55)

Therefore, condition (3.50) is not satisfied. We conclude that the IV method using
the NARX predictor results in a biased estimate. However, it can be proved in a
same way as in Section 3.2.3 that the bias can be negligible when the variance of the
position measurement noise is small compared to the magnet pole pitch of the CLM.
When this is not the case, the bias can be eliminated by using the bias-corrected
predictor introduced below.

Bias-corrected predictor

In order to eliminate the bias, similar to Section 3.2.3, the bias-correction factors ρn

defined in (3.25) are employed, resulting in the following bias-corrected predictor

ŵzbc(t ,θ) =
nΛ∑
l=1

flΛl (u(t ))+
nΛ∑
l=1

nF∑
n=1

cl ,n cos(ωn xm(t ))Λl (u(t ))ρn

+
nΛ∑
l=1

nF∑
n=1

dl ,n sin(ωn xm(t ))Λl (u(t ))ρn

=ϕ�
bc(t )θ, (3.56)

where θ ∈ Rnθ is the parameter vector defined in (3.52) and ϕbc(t ) ∈ Rnθ is the bias-
corrected regression vector given by

ϕbc(t ) = [Λ1(u(t )) . . . ΛnΛ (u(t ))

cos(ω1xm(t ))Λ1(u(t ))ρ1 . . . cos(ωnF xm(t ))ΛnΛ (u(t ))ρnF

sin(ω1xm(t ))Λ1(u(t ))ρ1 . . . sin(ωnF xm(t ))ΛnΛ (u(t ))ρnF ]�. (3.57)

In what follows we will show that the IV method using the proposed predictor
results in a consistent estimate.

Theorem 3.3.1. The IV estimate (3.48), with ζ(t ) and ϕ(t ) satisfy the following con-
ditions

• condition (3.49) holds,

• ζ(t ) is uncorrelated with ex (t ),

• ϕ(t ) is chosen equal to ϕbc(t ) given by (3.57),
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is consistent.

Proof. Due to (3.17) and (3.18), subtracting (3.56) from (3.46) results in

wzm(t )− ŵzbc(t ,θ0) =
nΛ∑
l=1

nF∑
n=1

c0
l ,n cos(ωn x(t ))Λl (u(t ))

[
1−cos(ωnex (t ))ρn

]
+

nΛ∑
l=1

nF∑
n=1

d 0
l ,n sin(ωn x(t ))Λl (u(t ))

[
1−cos(ωnex (t ))ρn

]
+

nΛ∑
l=1

nF∑
n=1

c0
l ,n sin(ωn x(t ))Λl (u(t ))sin(ωnex (t ))ρn

−
nΛ∑
l=1

nF∑
n=1

d 0
l ,n cos(ωn x(t ))Λl (u(t ))sin(ωnex (t ))ρn

+ew (t ). (3.58)

We note that ex (t ) is uncorrelated with x(t ), u(t ) and ζ(t ). Furthermore, ex (t )
and ew (t ) are white and zero-mean. Therefore, by substituting (3.58) into con-
dition (3.50) and using (3.23) and Proposition 3.2.1 we have

Ē[ζ(t )(wzm(t )− ŵzbc(t ,θ0))]

=
nΛ∑
l=1

nF∑
n=1

c0
l ,n

(
Ē [ζ(t )cos(ωn x(t ))Λl (u(t ))]

(
1−φex (ωn)ρn

))
+

nΛ∑
l=1

nF∑
n=1

d 0
l ,n

(
Ē [ζ(t )sin(ωn x(t ))Λl (u(t ))]

(
1−φex (ωn)ρn

))
= 0. (3.59)

Therefore, condition (3.50) is satisfied. Given that condition (3.49) is also satisfied,
the IV estimate using the bias-corrected predictor (3.56) is consistent.

3.3.4 Algorithm

The main steps of the IV algorithm for identification of CLMs in the non-driving
directions are summarized below.

Algorithm 3.3.2 (IV algorithm for non-driving directions).

1. Perform experiment and collect N samples of input-output measurement data
{u(t ), wzm(t )}N

t=1.

2. Construct the regression vector ϕ(t ) using (3.53) (NARX) or (3.57) (bias-correc-
ted).

3. Perform simulation with the noise-free model, using the same signals r1(t ) and
r2(t ) as used in the experiment, then construct the instrumental vector ζ(t ) as the
noise-free version of the regression vector ϕ(t ).

4. Calculate the IV estimate using (3.48).
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3.3.5 Simulation results

In this section, a numerical example is presented to verify the performance of the
proposed IV method in the non-driving directions. Similar to Section 3.2.5, we
assume that the CLM has three-phase coils A, B, C as shown in Fig. 1.2. We actually
only have two control inputs uA and uB since the sum of the three currents is zero
due to the star connection.

The main force components in the z-direction are the Lorentz force and the
reluctance force. It follows that

Λ(u) =
[
ΛLor(u)
Λrel(u)

]
= [

uA uB u2
A u2

B uAuB
]�

. (3.60)

The force function Φz (x) also consists of the Lorentz and the reluctance parts

Φz (x) = [
ΦLor

z (x) Φrel
z

]
. (3.61)

Similar to Section 3.2.5, we assume that the Lorentz force functions Φz A(x) and
ΦzB (x) contain the first order harmonic component ω1 = π

τp
and a higher-order har-

monic component ω2 = 2ω1, where τp = 0.04m is the magnet pole pitch. As a result,
ΦzLor(x) can be written as

ΦLor
z (x) = [

Φz A(x) ΦzB (x)
]= [∑2

n=1

(
cA,n cos(ωn x)+dA,n sin(ωn x)

)∑2
n=1

(
cB ,n cos(ωn x)+dB ,n sin(ωn x)

)]� . (3.62)

Here, Φz A(x),ΦzB (x) ∈R and ΦLor
z (x) ∈R1×2. As analyzed in Chapter 2, the reluctance

forces are not dependent on the position of the translator in the driving direction.
As a result, the reluctance force function can be represented as follows

Φrel
z = [

Φz A A ΦzBB Φz AB
]= [

f A A fBB f AB
]

. (3.63)

Therefore, the total force produced by the motor in the z-direction can be written
as

wz =

⎡
⎢⎢⎢⎢⎢⎣

∑2
n=1

(
cA,n cos(ωn x)+dA,n sin(ωn x)

)∑2
n=1

(
cB ,n cos(ωn x)+dB ,n sin(ωn x)

)
f A A

fBB

f AB

⎤
⎥⎥⎥⎥⎥⎦

�⎡
⎢⎢⎢⎢⎢⎣

uA

uB

u2
A

u2
B

uAuB

⎤
⎥⎥⎥⎥⎥⎦ . (3.64)

The simulation settings are similar to Section 3.2.5. The sampling frequency of
the system is Fs = 10 kHz. The reference signal r2(t ) is generated as a consecutive
sequence of random third-order motion profiles in the range [0m,0.08m]. The input
excitation signal is chosen as r1(t ) =∑100

n=1 pn sin(t+ψn), where pn and ψn are random
amplitudes and phase shifts. The force output measurement noise is a zero-mean
white Gaussian noise with standard deviation σew = 0.01 N. The position output
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Table 3.2: Mean and standard deviation of 100 estimated models

Para- True LS NARX IV Bias-corrected IV
meter value

cA,1 0.8660 0.6796±0.0441 1.1763±0.0246 0.8641±0.0181
cA,2 −0.4100 −0.1242±0.0378 −1.4055±0.0959 −0.4093±0.0279
cB ,1 0.1250 0.1903±0.0598 0.1726±0.0299 0.1268±0.0220
cB ,2 0.3050 0.0648±0.0392 1.0454±0.0784 0.3044±0.0228
dA,1 0.4330 0.4476±0.0533 0.5903±0.0249 0.4337±0.0183
dA,2 0.4150 0.0917±0.0334 1.4239±0.0838 0.4147±0.0244
dB ,1 0.7500 0.5253±0.0498 1.0214±0.0324 0.7504±0.0238
dB ,2 −0.2600 −0.0919±0.0340 −0.8916±0.0813 −0.2596±0.0237
f A A 0.0570 0.0577±0.0024 0.0580±0.0056 0.0580±0.0056
fBB 0.0570 0.0560±0.0028 0.0562±0.0065 0.0562±0.0065
f AB 0.0570 0.0574±0.0039 0.0568±0.0091 0.0568±0.0091

measurement noise is a zero-mean white Gaussian noise with standard deviation
σex = 0.01 m. The signal to noise ratio is 27 dB.

The exact knowledge of the noise characteristic is used for the bias-corrected IV
estimation. It should be noted that here we use higher measurement noise level
compared to Section 3.2.5, in order to demonstrate the effectiveness of the bias
correction scheme. It will be shown that with this high noise variance, the bias of
the NARX IV estimate is clearly noticeable, while the bias-corrected IV method is
able to eliminate the bias.

The system parameters are estimated from closed-loop data of length N = 100000.
A Monte-Carlo simulation of 100 runs is performed. The LS, the NARX IV and the
bias-corrected IV methods are tested. The results are summarized in Table 3.2. It is
observed that the LS method and the NARX IV method result in biased estimates. On
the other hand, the bias-corrected IV method provides a consistent estimate. This
result demonstrates the effectiveness of the new bias-corrected IV method.

Fig. 3.10 shows the forces in the z-direction produced by the true system model
and the estimated models when three-phase sinusoidal current waveforms are ap-
plied to the inputs:

uA = up cos

(
ω1x + 2π

3

)
, uB = up cos(ω1x) , (3.65)

where up = 6.4 A is the amplitude of the current. Compared to the true system, the
maximum force error of the bias-corrected IV estimated model is about 0.17%, while
the maximum force errors of the LS estimated model and the NARX IV estimated
model are much higher, about 7.48% and 21.95% respectively. The forces in the z-
direction produced by the 100 estimated models obtained using the bias-corrected
IV method are plotted in Figure 3.11.
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Figure 3.10: Forces in the z-direction produced by the true system and the estimated models.

Figure 3.11: Forces in the z-direction produced by the true system (red) and the 100 esti-
mated models obtained using the bias-corrected IV method (green).

3.4 Conclusions

In this chapter we have discussed the closed-loop identification problem of CLMs,
both in the driving and non-driving directions. There are two main challenges in this
identification problem. Firstly, due to the closed-loop data, the input is correlated
with the measurement noise, causing the simple LS estimate to be biased. Secondly,
the static nonlinearity of the CLM model is nonlinearly dependent on the unknown
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noise-free position output, which makes it difficult to find an appropriate predictor
for identification.

To address the problem caused by closed-loop data, we employ the IV identifi-
cation framework. Furthermore, we have proved that the IV framework using the
simple NARX predictor results in a biased estimate, due to the nonlinear depen-
dency of the model on the unknown noise-free position output. However, the bias
has been shown to be small if the position measurement noise is small compared to
the magnet pole pitch. When this does not hold, we have developed a bias-corrected
IV method which has been proved to deliver a consistent estimate. This method re-
quires knowledge of the probability distribution of the measurement noise. The
effectiveness of the new bias-corrected IV method has been demonstrated in nu-
merical examples. The resulting identified model will be used for commutation and
control in Chapters 4 and 5.

It is observed in simulation that the IV method for the driving direction in Sec-
tion 3.2, which aims to estimate the parameters of the static nonlinearity and the
linear dynamical system simultaneously, has low statistical efficiency, due to the
large difference in the values of the parameters in the parameter vector. Conse-
quently, the estimate is very sensitive to noise and disturbance. This problem causes
difficulty for identification of a real CLM as will be discussed further in Chapter 7.



Chapter 4
Optimal commutation with
nonlinear constraints

4.1 Introduction

A linear motor controller typically consists of a linear position controller and a com-
mutation algorithm. This chapter focuses on the commutation problem. The pur-
pose of a commutation algorithm is to invert the static nonlinearity between currents
and forces in a linear motor, thereby removing it from the control problem. More
specifically, the commutation algorithm calculates the required input currents in the
coils such that the desired forces and torques are obtained.

As commutation is the inverse of the static nonlinear model, the performance
of a commutation algorithm is determined by the accuracy of the model. Classical
commutation is derived from a simplified model of linear motors. The force function
of each coil is modeled as a pure sine wave as function of position. Consequently, the
resulting input currents are three-phase sinusoidal waveforms [45]. This approach
does not take into account the parasitic effects in the electromagnetic nonlinearity.
Therefore, the nonlinearity is not perfectly inverted, which results in force ripples
and hence reduces the tracking performance of the position control loop. Moreover,
the non-driving directions are neglected, resulting in parasitic forces and torques in

Parts of the content of this chapter have been published in:

• T. T. Nguyen, M. Lazar, H. Butler, “A computationally efficient commutation algorithm for para-
sitic forces and torques compensation in ironless linear motors,” in P. Hubbard (Ed.), 7th IFAC
Symposium on Mechatronic Systems, 2016.

• T. T. Nguyen, H. Butler and M. Lazar, “An analytical commutation law for parasitic forces and
torques compensation in coreless linear motors,” in IEEE European Control Conference (ECC),
Aalborg, 2016.

• T. T. Nguyen, M. Lazar and H. Butler, “Cancellation of normal parasitic forces in coreless lin-
ear motors,” in IEEE 19th International Conference on System Theory, Control and Computing
(ICSTCC), Cheile Gradistei, 2015.
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these directions.
To address this problem, a more accurate model of the static nonlinearity is

needed. An accurate model can be obtained from first-principle modeling as dis-
cussed in Chapter 2, or data-driven modeling as discussed in Chapter 3. The commu-
tation problem can then be formulated as finding the exact inverse of the accurate
nonlinearity model. The inverse of the nonlinearity model can be found by solving
a set of equations. When a linear motor is over-actuated, the set of equations is
underdetermined and thus has an infinite number of solutions. The extra degrees of
freedom can be used to minimize the power losses in the coils. As a result, the com-
mutation problem becomes an optimization problem. This optimization problem
can be solved using numerical optimization [2, 3, 61, 64, 65, 87, 92, 94], which is in
general computationally expensive. In the case when the relation between the force
vector and the current vector at a fixed position is linear, this optimization problem
can be solved analytically by eliminating equality constraints [24,85,86,88,89], by
using Lagrange multipliers [8, 9, 111], or by using the minimum 2-norm general-
ized inverse [92, 106]. These analytical commutation methods can be applied to
ideal CLMs, since the driving force is linear with the currents in the coils at a fixed
position.

However, in nonideal CLMs where the coils are not exactly in the center of the
air gap, the parasitic forces and torques are quadratic functions of the current vector
due to the presence of reluctance forces [46]. The commutation problem becomes
a quadratic optimization problem with quadratic equality constraints. In general,
it is difficult to find an analytical solution and hence numerical methods are neces-
sary for solving the commutation problem. Newton’s method has been used to solve
commutation problems in different types of electrical machines in [64,81], without
real-time experimental validation. Theoretically, Newton’s method can also be ap-
plied to solve the commutation problem for parasitic forces compensation in CLMs.
However, this method requires a high computational load and therefore it is difficult
to apply it to real machines with high sampling rate. More computationally efficient
methods are needed for real-time implementation of optimal commutation.

In this chapter we develop computationally efficient methods for solving the op-
timal commutation problem in CLMs. The simplest solution is to solve the optimal
commutation problem offline and store the solutions in a look-up table for online
interpolation. This approach is simple and fast, but requires a large amount of
memory in order to store a smooth solution, especially for applications which re-
quire control in multiple degrees of freedom [49]. As an alternative, sub-optimal
analytical solutions are developed for cases when the number of coils in the trans-
lator is low. The analytical solutions can be computed very fast and still are close to
the optimal one. Furthermore, in this chapter we also develop a fast optimization
algorithm which is well-suited to the commutation problem. The performance of
the developed commutation methods is verified by simulation with a FEM model.

The remainder of this chapter is organized as follows. The classical approach to
commutation is described in Section 4.2. In Section 4.3 we present the optimal com-
mutation formulation and develop computationally efficient methods for solving it.
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A simulation example with a FEM model is shown in Section 4.4 to demonstrate the
effectiveness of the developed commutation methods. The conclusions are summa-
rized in Section 4.5.

4.2 Classical commutation

In this section we discuss the classical commutation technique in three-phase ABC -
frame and dq0-frame.

4.2.1 Three-phase frame

The classical approach to commutation using three-phase sinusoidal currents is de-
picted in Figure 4.2. This commutation technique is based on a simplified model of
the linear motor in the driving direction and neglects the non-driving directions.

In classical commutation, it is assumed that the permanent magnet (PM) flux
linked by each coil is a sinusoidal function of the position x and has a spatial fre-
quency equal to π/τp

λA,pm = λ̂pm sin

(
π

τp
x + 2π

3

)
, (4.1a)

λB ,pm = λ̂pm sin

(
π

τp
x

)
, (4.1b)

λC ,pm = λ̂pm sin

(
π

τp
x − 2π

3

)
, (4.1c)

where λ̂pm is the per-phase amplitude and τp is the magnet pole pitch as depicted
earlier in Figure 2.1 [79]. The driving force exerted on each coil is given by

wx A = uA
∂λA,pm

∂x
= uA

π

τp
λ̂pm cos

(
π

τp
x + 2π

3

)
, (4.2a)

wxB = uB
∂λB ,pm

∂x
= uB

π

τp
λ̂pm cos

(
π

τp
x

)
, (4.2b)

wxC = uC
∂λC ,pm

∂x
= uC

π

τp
λ̂pm cos

(
π

τp
x − 2π

3

)
. (4.2c)

The balanced three-phase currents are supplied to the coils

uA = up sin

(
π

τp
x + 2π

3
+θ0

)
, (4.3a)

uB = up sin

(
π

τp
x +θ0

)
, (4.3b)

uC = up sin

(
π

τp
x − 2π

3
+θ0

)
, (4.3c)
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where up is the peak current and θ0 is the commutation angle. By substituting (4.3)
into (4.2) and taking the sum of the components in (4.2), the total driving force is
obtained as

wx = wx A +wxB +wxC = 3π

2τp
λ̂pm︸ ︷︷ ︸

km

up sin(θ0), (4.4)

where km is the motor force constant. It is observed from the above equation that
the maximum force is obtained when θ0 = ±π/2 rad. The sign of θ0 determines
the direction of the force. In order to obtain a maximum positive driving force, θ0

is chosen equal to π/2 rad. The current amplitude is calculated from the desired
driving force w∗

x as follows

up = w∗
x

km
. (4.5)

The resulting currents supplied to the coils are

uA = w∗
x

km
sin

(
π

τp
x + 2π

3
+ π

2

)
, (4.6a)

uB = w∗
x

km
sin

(
π

τp
x + π

2

)
, (4.6b)

uC = w∗
x

km
sin

(
π

τp
x − 2π

3
+ π

2

)
. (4.6c)

For demonstration, Figure 4.1 shows the force and torque produced by a CLM
using classical commutation with up = 8 A and θ0 = π/2 rad. The parameters of the
CLM are given in Table 2.2. The coil array is shifted 1 mm out of the center of the
air gap in the z-direction. The force and torque are obtained by simulation using
the Fourier model derived in Chapter 2.

4.2.2 dq0 frame

Assuming that the three-phase system is balanced, the analysis of a CLM can be
simplified by transforming the three-phase quantities to a dq0-reference frame with
Park’s transformation [79]. The dq0-reference frame is fixed to the magnet array.
The d-axis is aligned with the PM flux and the q-axis is perpendicular to the d-axis.
The transformation from the three-phase quantities to the dq0-reference frame is
given by

⎡
⎣ fd

fq

f0

⎤
⎦= Td q0

⎡
⎣ f A

fB

fC

⎤
⎦= 2

3

⎡
⎢⎢⎣

sin
(
π
τp

x + 2π
3

)
sin

(
π
τp

x
)

sin
(
π
τp

x − 2π
3

)
cos

(
π
τp

x + 2π
3

)
cos

(
π
τp

x
)

cos
(
π
τp

x − 2π
3

)
1
2

1
2

1
2

⎤
⎥⎥⎦
⎡
⎣ f A

fB

fC

⎤
⎦ .

(4.7)
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Figure 4.1: Forces and torque produced by the example CLM.

The inverse transformation is given by

⎡
⎣ f A

fB

fC

⎤
⎦= T −1

d q0

⎡
⎣ fd

fq

f0

⎤
⎦=

⎡
⎢⎢⎢⎣

sin
(
π
τp

x + 2π
3

)
cos

(
π
τp

x + 2π
3

)
1

sin
(
π
τp

x
)

cos
(
π
τp

x
)

1

sin
(
π
τp

x − 2π
3

)
cos

(
π
τp

x − 2π
3

)
1

⎤
⎥⎥⎥⎦
⎡
⎣ fd

fq

f0

⎤
⎦ . (4.8)

The driving force in (4.4) can be rewritten as

wx = π

τp
λ̂pm

[
cos

(
π
τp

x + 2π
3

)
cos

(
π
τp

x
)

cos
(
π
τp

x − 2π
3

)]⎡⎣uA

uB

uC

⎤
⎦ . (4.9)
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Figure 4.2: Classical commutation scheme.

Applying the transformation (4.8) yields

wx = 3π

2τp
λ̂pm

[
0 1 0

]⎡⎣ud

uq

u0

⎤
⎦= 3π

2τp
λ̂pmuq = kmuq . (4.10)

This equation shows that the driving force can be controlled via the q-axis current
as they are directly proportional. By following similar calculation, the force in the
z-direction is given by

wz = 3

2

∂λpm

∂z
ud . (4.11)

It is therefore possible to control the force in the z-direction via the d-axis current.
It is noted that when the motor is ideal and the coils are exactly in the center of the
air gap then we have ∂λpm

∂z = 0. As a result, force production in the z-direction is not
possible.

In summary, the classical commutation method is based on a simplified model
of the CLM which does not take into account the higher-order harmonics and the
parasitic effects. Consequently, the classical commutation method does not pro-
vide the exact desired driving force. Furthermore, classical commutation generally
neglects the force and torque in the non-driving directions. Although the normal
force wz can be controlled via the d-axis current, it should be noted that the dq0-
transformation is also based on a simplified model of the CLM and is only correct
for balanced three-phase systems, which is usually not the case for nonideal CLMs.
Therefore, classical commutation generally is unable to attenuate the parasitic force
and torque in the non-driving directions.

4.3 Optimal commutation

In this section, we formulate the optimal commutation problem which is capable of
eliminating parasitic forces and torques in the non-driving directions. Furthermore,
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computationally efficient methods are developed for solving the formulated optimal
commutation problem. As discussed in Chapter 2, we only consider the forces in the
x- and z-directions and torque about the y-axis, as the forces and torques in other
directions are negligible [46].

4.3.1 Optimal commutation problem formulation

The purpose of the commutation algorithm is to calculate the required input cur-
rents u such that the desired forces and torque are obtained. Mathematically, the
commutation algorithm has to find a current vector u ∈Rnu that satisfies

Ψ(x,u) = w∗. (4.12)

Here, w∗ is the desired wrench vector

w∗ =
[

F∗
x F∗

z T ∗
y

]�
, (4.13)

where F∗
x , F∗

z and T ∗
y denote the desired forces and torque. In the context of CLMs,

it is desired to have F∗
z = 0 and T ∗

y = 0 since they are acting in non-driving directions.
When a CLM is over-actuated, equation (4.12) can have an infinite number of

solutions. As a result, we have the freedom to choose the solution which is beneficial
for the application. An attractive solution is the one that minimizes the dissipated
power in the coils. The commutation problem can be reformulated as

Problem 4.3.1 (Optimal commutation).

min
u

u�u

subject to Ψ(x,u) = w∗.

In an ideal CLM, the main force component is the Lorentz force which is linear
in u. As a result, the static nonlinearity part can be written as

w =Ψ(x,u) = K (x)u, (4.14)

where K (x) ∈ R3×nu is a position-dependent matrix. In this case, the optimal com-
mutation problem 4.3.1 has a closed-form solution

u = K (x)†w∗, (4.15)

where K (x)† denotes the minimum 2-norm generalized inverse, or the right inverse,
of K (x) [84]

K (x)† = K (x)�
(
K (x)K (x)�

)−1
. (4.16)

In the non-ideal case when the translator is not exactly in the center of the air
gap, there are reluctance forces in the non-driving directions. As a result, the static
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nonlinearity part can be written as

w =Ψ(x,u) =
⎡
⎣ Kx (x)u

Kz (x)u +u�Gz u
Ky (x)u +u�Gy u

⎤
⎦ , (4.17)

where Kx (x), Kz (x), Ky (x) ∈ R3×1 are position-dependent matrices, and Gz , Gy ∈
Rnu×nu are constant matrices, since the reluctance force is not dependent on the
x-position as analyzed in Chapter 2. It can be seen that the optimal commutation
problem 4.3.1 has nonlinear equality constraints in this case. As a result, the prob-
lem does not have a closed-form solution and generally a numerical optimization
method is required to search for the solution.

However, numerical optimization methods require high computational demand
and therefore are difficult to apply to real-time setups. In what follows we will
present alternative methods which are computationally efficient for solving the op-
timal commutation problem.

4.3.2 Look-up table solution

A look-up table is a very simple but efficient solution. In this approach, the ranges
of x and w∗, from the minimum to the maximum values, are gridded. The optimal
commutation problem 4.3.1 is solved offline at the grid points. The resulting so-
lutions are stored in a look-up table. The online solution can then be obtained by
interpolation between the stored values. An example of a look-up table is shown in
Table 4.1.

Table 4.1: A one-dimensional look-up table.

F∗
x [1] F∗

x [2] . . . F∗
x [nF x ]

x[1] u[1,1] u[1,2] . . . u[1,nF x ]
x[2] u[2,1] u[2,2] . . . u[2,nF x ]

...
...

...
. . .

...
x[nx ] u[nx ,1] u[nx ,2] . . . u[nx ,nF x ]

The look-up table solution is computationally efficient for online use as it only
requires interpolation between pre-computed values. However, in order to have
a smooth solution, a large number of grid points is required, which costs a large
amount of memory [49]. In addition, solving the optimal commutation problem
4.3.1 offline for all the grid points is a time-consuming task. Furthermore, for ap-
plications which requires control in multiple degrees of freedom (DOFs), a multi-
dimensional look-up table is needed, causing the number of grid points and the
required amount of memory to grow exponentially. Due to these reasons, a look-up
table is not an attractive solution for applications which require control in multiple
DOFs.
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4.3.3 Analytical solutions

In this section we present analytical solutions for some special cases of the com-
mutation optimization problem where the number of coils in the translator is low,
which is quite common in practice.

One set of three-phase coils

Let us consider the case when the motor has only one set of three-phase coils con-
nected in star configuration. In this case, the sum of the three currents must be zero.
As a result, we have only two independent control inputs uA and uB , which are the
currents in coil A and coil B , respectively. Consequently, it is not possible to control
the forces and torque in three DOFs. A possible solution is to neglect the parasitic
torque and only compensate for the parasitic forces in the x- and z-directions. As a
result, the commutation problem becomes a set of two equations with two variables

Kx (x)u = F∗
x , (4.18)

Kz (x)u +u�Gz u = 0, (4.19)

with u = [
uA uB

]�. The solution of this set of equations can be calculated analyti-
cally. Let us denote

Kx = [
Kx A KxB

]
, (4.20)

Kz =
[
Kz A KzB

]
, (4.21)

Gz =
[

Gz A A Gz AB

GzB A GzBB

]
. (4.22)

Here, the dependency of the matrices Kx and Kz on x is omitted for brevity. It follows
from (4.18) that

uB = F∗
x −Kx AuA

KxB
. (4.23)

Substituting (4.23) into (4.19) results in a quadratic equation in uA

a2u2
A +a1uA +a0 = 0, (4.24)

where

a2 =Gz A A − Kx A

KxB
(G AB +GB A)+ K 2

x A

K 2
xB

GBB , (4.25a)

a1 =−2
Kx A

K 2
xB

GBB + 1

KxB
(G AB +GB A)F∗

x +Kz A − Kx A

KxB
KzB , (4.25b)

a0 = KzB

KxB
F∗

x + 1

K 2
xB

GBB F∗
x

2. (4.25c)
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The solutions for uA are:

uA =
−a1 ±

√
a2

1 −4a2a0

2a2
. (4.26)

The solution with smaller value of u�u is then selected in order to minimize the
power losses in the coils.

The presented commutation algorithm is fully analytical. The computational
demand is thus low and is promising for real-time implementation.

Two sets of three-phase coils

If the motor has two sets of three-phase coils, there are four independent control
inputs uA1, uB1, uA2 and uB2. As a results, we have enough degrees of freedom to
control the forces and torque in three DOFs. The commutation problem has to find
an input vector u such that

Kx u = F∗
x , (4.27)

u�Gz u +Kz u = 0, (4.28)

Ky u = 0, (4.29)

with u = [
uA1 uB1 uA2 uB2

]�. Here, the reluctance part in the torque around the
y-axis is neglected since it is generally very small as can be seen in Section 2.6. As
there are four variables and three equations, we have one extra degree of freedom.
This extra degree of freedom can be used to minimize the power losses in the coils as
discussed in Section 4.3.1. However, this approach leads to an optimization problem
which requires numerical optimization methods. The high computational load of
numerical optimization methods makes it difficult to implement them in systems
with a fast sampling rate.

To avoid solving an optimization problem numerically, we develop a sub-optimal
analytical solution for the commutation problem. It is observed that the commuta-
tion problem in this case has four variables and three constraints, in which one is
quadratic and two are linear. An analytical solution will be possible if we add one
more suitable linear constraint, making the number of variables equal to the number
of constraints. The question is how to find a suitable additional linear constraint. In
what follows we will present the derivation of a suitable additional constraint.

Let Fx1 and Fx2 be the driving forces produced by coil set 1 and coil set 2, re-
spectively. We have

Fx = Fx1 +Fx2 = Kx1u1 +Kx2u2. (4.30)

We know that the driving force Fx is a linear function of the current vector u. Instead
of minimizing u�u, which is equal to:

u�u = u�
1 u1 +u�

2 u2, (4.31)
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we can try to minimize F 2
x1 +F 2

x2, which is equal to:

F 2
x1 +F 2

x2 =u�
1 (K �

x1Kx1)u1 +u�
2 (K �

x2Kx2)u2

=u�Qu, (4.32)

where

Q =
[

K �
x1Kx1 02×2

02×2 K �
x2Kx2

]
(4.33)

is a positive definite matrix. Here, 02×2 denotes a zero matrix of dimension [2×2]. In
short, instead of minimizing u�u, we minimize u�Qu, where Q is a positive definite
matrix defined by (4.33).

Besides, the constraint (4.27) is equivalent to

Kx1u1 +Kx2u2 = F∗
x , (4.34)

or

Fx1 +Fx2 = F∗
x . (4.35)

Consequently, we can write:

Fx1 =αF∗
x , (4.36)

Fx2 =(1−α)F∗
x , (4.37)

where 0 ≤α≤ 1. The new cost function to be minimized is:

J (α) =(αF∗
x )2 + ((1−α)F∗

x )2 (4.38)

=(2α2 −2α+1)F∗2
x . (4.39)

Taking the derivative with respect to α, we have the optimality condition:

∂J (α)

∂α
= 2(2α−1)F∗2

x = 0, (4.40)

which has the solution α = 0.5. This means the driving forces produced by the two
sets of coils are equal. Therefore, the new optimality condition can be written as a
linear constraint:

Fx1 = Fx2, (4.41)

or equivalently

Kx1u1 −Kx2u2 = 0. (4.42)

The commutation problem now has four equations (4.27), (4.28), (4.29) and
(4.42). From the three linear equations, the current vector u can be written as a
function of one current, e.g. uA1:

u =V uA1 +W, (4.43)
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where V ,W ∈R4×1. Substituting (4.43) into (4.28), we have a quadratic equation:

a2u2
A1 +a1uA1 +a0 = 0, (4.44)

where

a2 =V �GzV , (4.45)

a1 = KzV +V �GzW +W �GzV , (4.46)

a0 = KzW +W �GzW. (4.47)

The solutions of (4.44) are

uA1 =
−a1 ±

√
a2

1 −4a2a0

2a2
. (4.48)

The current vector is then computed using (4.43). The solution with smaller value
of u�Qu is selected out of the two possible solutions.

The proposed solution is not the optimal solution of Problem 4.3.1 since it min-
imizes u�Qu instead of u�u. However, it provides a good trade-off between opti-
mality and computational efficiency, as will be demonstrated in Section 4.4.

Three or more sets of three-phase coils

For CLMs with three or more sets of three-phase coils, it is also possible to find ana-
lytical sub-optimal solutions by adding suitable constraints such that the number of
equations is equal to the number of variables. How to choose additional constraints
is dependent on specific applications and will not be discussed further.

4.3.4 Fast numerical optimization solution

In general, a numerical optimization algorithm is required to find the optimal solu-
tion of the commutation problem 4.3.1. In this section we develop an optimization
algorithm which is computationally efficient and well-suited to the commutation
problem. Let us define

g (u) =Ψ(x,u)−w∗, (4.49)

where u ∈Rn and g (u) ∈Rm , with n denoting the number of variables and m denot-
ing the number of constraints. Here, we omit the dependency of g on x since x does
not change in one sampling period and thus can be considered as a constant in the
optimization problem. Problem 4.3.1 is rewritten as

min
u

u�u

subject to g (u) = 0.
(4.50)

Problem (4.50) is a quadratic optimization problem with nonlinear equality con-
straints. In what follows we first review the standard approach to solve this class of
optimization problems using Lagrange multipliers and Newton’s method. Then our
new optimization algorithm is presented.



4.3 Optimal commutation 77

Newton’s method

A common approach to solve the optimization problem (4.50) is to solve the set
of optimality conditions, which are known as the Karush–Kuhn–Tucker (KKT) con-
ditions [53], using Newton’s method. This approach has been used to solve the
commutation problem in other types of actuators in [64,81].

First, we define the Lagrange function of the optimization problem (4.50) as
follows

L (u,λ) = u�u +λ�g (u), (4.51)

where λ ∈ Rm is the vector of Lagrange multipliers. The KKT optimality conditions
of Problem (4.50) are

∇[u,λ]�L (u,λ) = 0(n+m)×1, (4.52)

with

∇[u,λ]�L (u,λ) =
[

2u +∇u g (u)λ
g (u)

]
. (4.53)

The system of equations (4.52) is solved iteratively using Newton’s method. Let uk

and λk be the estimated values of the optimal solution of u and λ at any iteration
k ∈N. Then the new estimated values are computed as follows:

[
uk+1

λk+1

]
=

[
uk

λk

]
−
(
∇2

[uk ,λk ]�L (uk ,λk )
)−1∇[uk ,λk ]�L (uk ,λk ), (4.54)

where ∇2
[uk ,λk ]�L (uk ,λk ) is the Hessian matrix of L (uk ,λk ):

∇2
[u,λ]�L (u,λ) =

[∇2
uL (u,λ) ∇u g (u)
∇u g (u)� 0m×m

]
. (4.55)

The iterative process (4.54) stops when a predefined accuracy ε is reached, i.e.

‖g (uk )‖2 ≤ ε, (4.56)

where ε is a small positive value.
This algorithm converges locally to a local minimum of Problem (4.50) and the

convergence rate is quadratic. The proof of convergence of the Newton’s method
can be found in [52,83]. However, this method introduces additional variables, i.e.
Lagrange multipliers, which increases the complexity of the problem. In addition,
the need to evaluate and store the Hessian matrix increases the computation time
and the amount of memory needed.



78 Optimal commutation with nonlinear constraints

Proposed algorithm

In this section, we develop a new algorithm which does not introduce additional
optimization variables and does not require the Hessian matrix. Instead of formu-
lating the optimality conditions (4.52), we directly solve the set of constraints in
problem (4.50). The proposed method to solve the constraints of problem (4.50) is
inspired by the classical Newton’s method. The original idea of the iterative New-
ton’s algorithm is to linearize g (u) around the current estimate uk at iteration k:

g (u) ≈ g̃ (u) := g (uk )+∇g (uk )�(u −uk ). (4.57)

Then the new estimate uk+1 of the solution has to satisfy

g̃ (uk+1) = 0, (4.58)

which is equivalent to

∇g (uk )�uk+1 =∇g (uk )�uk − g (uk ). (4.59)

Since the system of equations (4.58) is underdetermined, i.e. m < n, it has an
infinite number of solutions. A feasible solution of (4.58) is

uk+1 = uk −∇g (uk )†g (uk ), k = 0,1, . . . , (4.60)

where ∇g (uk )† is the minimum 2-norm generalized inverse, or the right inverse of
∇g (uk )� [84]:

∇g (uk )† =∇g (uk )(∇g (uk )�∇g (uk ))−1. (4.61)

The update (4.60) is known as the generalized Newton’s method for underdeter-
mined systems of equations, which provides a feasible solution of (4.58). However,
instead of just computing a feasible solution, we can compute the minimum 2-norm
solution of (4.58), which is the solution that has smallest value of u�

k+1uk+1, i.e.

uk+1 =∇g (uk )†(∇g (uk )�uk − g (uk )), (4.62)

or, equivalently

uk+1 =∇g (uk )†∇g (uk )�uk −∇g (uk )†g (uk ). (4.63)

The iteration (4.63) is identical to the generalized Gauss-Newton (GGN) method
for nonlinear constrained least squares problems which was originally proposed and
analyzed in [13].

The generalized Newton’s method (4.60) only provides a feasible solution of
the set of constraints in problem (4.50), but its local convergence has been proven
in [10, 55]. On the other hand, the iteration (4.63) provides the minimum 2-norm
solution of the set of constraints in problem (4.50), but it only converges if the
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residual function of the nonlinear constrained least squares problem is small at the
solution [21]. To solve this issue of (4.63), we use a new iteration, which is the
interpolation between iteration (4.60) and iteration (4.63), i.e.

uk+1 =αuk + (1−α)∇g (uk )†∇g (uk )�uk −∇g (uk )†g (uk ), (4.64)

where 0 < α < 1. It can be proved that the proposed iteration (4.64) inherits the
local convergence property of (4.60) and the optimality property of (4.63). The
proof will be presented in Chapter 6.

The presented algorithm has a linear convergence rate, while the convergence
rate of the Newton’s method is proven to be quadratic. Therefore, the proposed
algorithm may need more iterations to converge. However, each proposed iteration
has lower complexity than each Newton’s iteration. Since the complexity of invert-
ing a matrix in Ru is O (u3), the complexity of multiplying a matrix in Ru×v and a
matrix in Rv×w is O (uv w) [36], it can easily be verified that the complexity of one
proposed iteration, including the computation of the generalized inverse, is O (n2m).
This is lower than the complexity of one Newton’s iteration, which is O ((n +m)3).

In summary, the proposed algorithm converges to the same optimal solution as
the Newton’s method (4.54), but without the need to introduce additional optimiza-
tion variables and to evaluate the Hessian matrix. As a result, the proposed algo-
rithm is computationally efficient and therefore is beneficial for the commutation
problem in real-time implementation, since the sampling rate of a CLM is usually
very high and the time for computation is limited.

4.4 Simulation results

In this section, simulation results of the developed commutation methods are pre-
sented for demonstration purpose. The simulation is performed with the FEM model
shown in Figure 2.6. The FEM model is created using Cobham Opera-2D simulation
software. The parameters of the FEM model are summarized in Table 2.2. The ex-
ample motor has two sets of three-phase coils next to each other. Some artificial
manufacturing tolerances are added to make the motor nonideal. Firstly, the coils
are shifted 1 mm out of the center of the air gap in the z-direction. This displace-
ment causes not only parasitic Lorentz forces and torques, but also reluctance forces
and torques, since the motor geometry becomes asymmetric. Secondly, some mag-
nets have higher or lower remanent magnetization as depicted in Figure 2.6. The
variation of remanent magnetization causes parasitic Lorentz forces and torques in
the motor.

We simulate the classical commutation algorithm described in Section 4.2, the
analytical commutation algorithm in Section 4.3.3 and the fast optimization com-
mutation algorithm in Section 4.3.4. The Fourier model obtained from Section 2.6
is used for the analytical commutation and fast optimization commutation.

For the fast optimization algorithm, the final result of the commutation algorithm
at each position is used as the "warm-start" initial estimate u0 for the next position.
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Figure 4.3: Resulting forces and torque.

The interpolation coefficient is chosen as α = 0.01. The predefined accuracy is ε =
10−6. The Newton’s method is also simulated for comparison.

The simulation is performed along the x-direction, in the range between 156 mm
and 312 mm.. The reference driving force is F∗

x = 1000 N. The simulation results are
presented and discussed below.

4.4.1 Resulting forces and torque

The resulting forces and torque of the considered commutation methods are shown
in Figure 4.3. The results of the classical commutation described in Section 4.2 are
also plotted for comparison. The root mean square (rms) values of the forces and
torque error are summarized in Table 4.2.

It is clearly seen that the classical commutation results in high ripples in the
driving force and nonzero normal force and torque. On the other hand, with the new
commutation methods, almost the exact reference forces and torque are obtained.
The forces and torque errors are small as summarized in Table 4.2.

The results of the developed optimization algorithm are the same as those of
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Table 4.2: Forces and torque error

Classical Analytical Fast optimization
solution solution solution

Fx error rms (N) 8.8687 0.3058 0.3020
Fz error rms (N) 3.3745 0.0655 0.0660
Ty error rms (Nm) 1.9922 0.0336 0.0079

the Newton’s method and the commercial solvers Knitro [16], IPOPT [109] and
Matlab’s solver fmincon. This verifies the local optimality property of the proposed
optimization algorithm.

4.4.2 Dissipated power

The current waveforms of the classical solution, the analytical solution and the fast
optimization solution are shown in Figure 4.4. It is observed that, in contrast to the
classical commutation method which uses perfect sinusoidal current waveforms, the
new commutation methods use distorted sinusoidal waveforms, in order to compen-
sate for the imperfection of the motor.

The values of u�u, which is proportional with the dissipated power in the coils,
are plotted in Figure 4.5. The dissipated power of the proposed commutation meth-
ods is in general higher than that of the classical commutation. The fast optimization
method provides the solution which can compensate for parasitic forces and torques
with minimum dissipated power. The dissipated power of the analytical solution is
a little higher than that of the fast optimization solution, as the analytical solution is
only a sub-optimal solution which does not guarantee minimum dissipated power.
However, it can be seen that the difference in dissipated power of the two methods
is small.

4.4.3 Computational time

The simulation is performed on a 3.6 GHz computer. The average computation time
of the analytical solution is 0.16 ms. The new optimization algorithm converges
after 2 or 3 iterations. The average computation time for commutation of the new
optimization algorithm is 0.22 ms. It can be seen that the computation time of the
proposed methods are higher than that of the classical commutation, which is about
0.09 ms. However, they are still low compared to other numerical optimization
methods. Using Newton’s method, it also takes 2 to 3 iterations to converge and
the average computation time is 0.35 ms. The average computation times using the
solvers Knitro, IPOPT and fmincon are much higher, about 11.4 ms, 56.3 ms and
6.5 ms respectively. It is noted that the solvers also make use of "warm-start" initial
estimate.
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Figure 4.4: Current waveforms of the classical and new commutation methods.

It should be noted that here the developed algorithms are programmed in Matlab
code, which generally run slower than C code. By converting Matlab code to C code,
the algorithms run much faster and we are able to implement them on a real linear
motor setup with a fast sampling rate of 10 kHz as will be shown in Chapter 7.

4.4.4 Summary

In summary, compared to the classical commutation, the developed commutation
methods are able to compensate for parasitic forces and torques, at the price of
increased dissipated power and computation time. Compared to other numerical
optimization methods and solvers such as Newton’s method, Knitro solver, IPOPT
solver and fmincon solver, the proposed fast optimization solution provides the same
local optimal solution, but with lower computation time. The analytical solution is
a sub-optimal solution of the commutation problem which does not guarantee mini-
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Figure 4.5: The values of u�u.

mum power losses, but requires less computation time than numerical optimization
methods. Its dissipated power is a little higher than that of the fast optimization
solution.

4.5 Conclusions

In this chapter we have formulated the commutation problem as an optimization
problem which minimizes the power losses in the coils, subject to the constraints
that the desired forces and torques are obtained. Compared to classical commu-
tation, the optimal commutation method is capable of compensating for parasitic
forces and torques in driving and non-driving directions. However, solving the
optimal commutation problem generally requires numerical optimization methods
which are computationally expensive. To address this problem, we have developed
computationally efficient methods for solving the optimal commutation problem.
A look-up table is a simple but efficient method, but on the other hand requires a
large amount of memory and is not suitable for applications which requires control
in multiple DOFs. As an alternative, sub-optimal analytical solutions have been de-
veloped for cases when the number of coils in the translator is low. Furthermore, we
also develop a new optimization algorithm which is more computationally efficient
than the classical Newton’s method. The effectiveness of the developed commuta-
tion methods has been verified by simulation with a FEM model.





Chapter 5
Model predictive control of
linear motors

5.1 Introduction

A standard CLM control scheme typically consists of two sub-controllers: a commu-
tation algorithm and a linear position controller. The commutation algorithm aims
to invert the position-dependent static nonlinearity between forces and currents,
thereby removing it from the control problem. The remaining linear motion dynam-
ics is then controlled by a linear position controller which may include feedforward.

In practice, a classical approach is used for commutation and linear position con-
trol of linear motors. Classical commutation makes use of three-phase sinusoidal
current waveforms as functions of position, which results in force ripples in both
driving and non-driving directions as discussed in Chapter 4 of this thesis. The lin-
ear position controller typically consists of a proportional-integral-derivative (PID)
feedback controller and a feedforward controller. This classical position controller
has several drawbacks. Firstly, when there are physical constraints on the system,
such as current limit and force limit, the classical control approach cannot guarantee
constraint satisfaction. This will be a drawback for future high-precision positioning
systems where linear motors have to operate near their physical limit to increase
efficiency and throughput. Secondly, the performance of the classical controllers is
mostly determined by the feedforward controller. However, the feedforward control
input is calculated based on the knowledge of the model and then implemented in
an open-loop manner. Consequently, model mismatches and disturbances can result
in reduced performance. Thirdly, for control in multiple degrees of freedom (DOFs),

Part of the content of this chapter has been published in:

• T. T. Nguyen, M. Lazar and H. Butler, “Nonlinear model predictive control of ironless linear
motors,” in IEEE 2nd Conference on Control Technology and Applications (CCTA), Copenhagen,
2018.
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designing and tuning of classical controller can be a cumbersome task, as we have
to decouple the system and then design single-output single-input (SISO) feedback
and feedforward controllers for every DOF [30,105].

There are alternative approaches which can overcome the limitations of the clas-
sical commutation and position controller. Classical commutation can be replaced
by optimal commutation (OC) as discussed in Chapter 4. The OC is formulated
as an optimization problem which calculates the currents in the coils such that the
desired forces are obtained and the power loss is minimized [64, 92]. The OC is
capable of eliminating force ripples in driving and non-driving directions as demon-
strated in Chapter 4. The classical PID and feedforward approach can be replaced
by linear model predictive control (LMPC), which is known for its high performance
and ability to guarantee constraint satisfaction [18,26,43,110].

Replacing both the classical position controller and classical commutation, we
obtain a cascaded control scheme which consists of a LMPC controller and an OC al-
gorithm. This scheme can lead to excellent performance of linear motors as demon-
strated in our previous work [68] and also in this chapter. However, it requires
solving two separate optimization problems, one for LMPC and one for OC. This is
not the optimal setting, since the combination of the optimal solutions of the two
sub-controllers may not yield the optimal solution for the whole controller. Further-
more, as the LMPC problem cannot take into account the limit of the currents but
only the limit of the forces, it can give a force setpoint that is unachievable, causing
the OC problem to be infeasible.

To overcome this limitation, our goal is to replace the traditional cascaded two-
level control scheme with a single nonlinear position controller which receives posi-
tion measurements and directly calculates the necessary currents in the coils. Model
predictive control (MPC) is an excellent tool for this purpose thanks to its ability to
deliver optimal performance while guaranteeing constraint satisfaction.

In this chapter we present two MPC schemes for linear motors. The first one
is the Combined LMPC and OC scheme, in which the LMPC problem and the OC
problem are combined into a single optimization problem. In this scheme only the
linear dynamics is used for prediction. There is no prediction for the static nonlin-
earity part. The second scheme is the nonlinear model predictive controller (NMPC)
scheme, where the full nonlinear model is used for prediction. In the two presented
MPC schemes, we only need to solve a single optimization problem every sampling
time. Furthermore, the proposed schemes can guarantee constraint satisfaction and
are capable of compensating for parasitic forces and torques in driving and non-
driving directions. The effectiveness of the proposed MPC schemes is demonstrated
in a simulation example.

The remainder of this chapter is organized as follows. Section 5.2 discusses the
Cascaded LMPC and optimal commutation scheme and present a Combined LMPC
and optimal commutation scheme. The NMPC scheme for linear motors is proposed
in Section 5.3. The simulation results are presented in Section 5.4. The conclusions
are summarized in Section 5.5.
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5.2 Linear model predictive control and optimal com-
mutation

In order to optimize the performance and to guarantee constraint satisfaction, we
replace the classical position controller and classical commutation with LMPC and
OC (LMPC+OC). Compared to the classical controllers, LMPC can guarantee con-
straint satisfaction and OC can eliminate force ripples due to parasitic effects. In
this section we discuss the Cascaded LMPC+OC scheme and its limitation. The
Combined LMPC+OC scheme is then introduced to overcome the limitation.

5.2.1 Cascaded LMPC and optimal commutation

The Cascaded LMPC+OC scheme is obtained simply by replacing the classical po-
sition controller and classical commutation with a LMPC controller and an OC al-
gorithm. This control scheme was first presented in our previous work [68]. The
Cascaded LMPC+OC scheme is shown in Figure 5.1.

LMPC

CommutationController

Linear motor

Electromagnetics
 

Motion
dynamics

Figure 5.1: Cascaded LMPC+OC scheme.

In this section we present the formulation of the LMPC and the OC problems.
First, let us define the state of the linear system as

x =
[

x
v

]
, (5.1)

where v is the speed of the motor in the driving direction x. The linear motion
dynamics in the driving direction x can be written in state-space form as follows

x+ = Ax+B w x , (5.2)

where x ∈R2, w x ∈R, A ∈R2×2 and B ∈R2. Here, x+ denotes the state at the next time
sample.

Let r (t ) denotes the reference trajectory that the output position x(t ) has to track.
It is assumed that r (t ) is given in advance. In what follows we present the offline
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calculation of the reference state, reference force and reference input currents which
are necessary for the LMPC and OC problem formulation. The reference state xr is
defined as

xr =
[

r
vr

]
, (5.3)

where vr is the reference velocity. Given a reference trajectory r (t ), the reference
velocity vr (t ) can be calculated offline noting that vr is the derivative of r . This
relation can be written in discrete-time transfer function as follows

r (t +1) = Ts q−1

1−q−1 vr (t +1), (5.4)

where Ts is the sampling time and q−1 is the delay operator with q−i r (t ) = r (t − i ).
It follows that

vr (t ) = 1

Ts
(r (t +1)− r (t )). (5.5)

The reference force w xr is defined as

w xr = mar , (5.6)

where m is the mass of the translator and ar is the reference acceleration, which
can be calculated offline in the same way that we calculate vr

ar (t ) = 1

Ts

(
vr (t +1)− vr (t )

)
. (5.7)

From the reference driving force w xr (t ), we can calculate the reference input current
ur (t ) as the solution of the offline optimal commutation problem

min
ur (t )

ur (t )�ur (t )

subject to Ψx
(
r (t ),ur (t )

)= wr x (t ),

Ψz
(
r (t ),ur (t )

)= 0,

Ψy
(
r (t ),ur (t )

)= 0,

umin ≤ ur (t ) ≤ umax.

(5.8)

Here, Ψx (x,u), Ψz (x,u) and Ψy (x,u) represent the relation between the current vec-
tor u and the driving force w x , the normal force w z and the torque w y around the
y-axis at a position x, respectively. It should be noted that in the context of CLMs,
the reference force in the z-direction and the desired torque around the y-axis are
always zero. The offline optimal commutation problem (5.8) searches for a cur-
rent vector ur (t ) which satisfies the current limit such that the reference wrench is
obtained and the power loss is minimized.

In the Cascaded LMPC+OC scheme, the LMPC problem and the OC problem are
formulated and solved independently. The LMPC problem is formulated as follows
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Problem 5.2.1 (LMPC).

min
x1,...,xN ,

w x
0 ,...,w x

N−1

(
xN −xr

N

)� P
(
xN −xr

N

)+N−1∑
i=0

(
xi −xr

i

)�Q
(
xi −xr

i

)

+
N−1∑
i=0

(
w x

i −w xr
i

)� Rw
(
w x

i −w xr
i

)
subject to

xi+1 = Axi +B w x
i , ∀i = 0, . . . , N −1,

xmin ≤ xi ≤ xmax, ∀i = 1, . . . , N ,

w x
min ≤ w x

i ≤ w x
max, ∀i = 0, . . . , N −1.

Here, N ∈N is the prediction horizon, Q ∈ R2N×2N is the state cost, P ∈ R2N×2N is
the terminal cost and Rw ∈ RN×N is the control cost. Notice that the reference force
w xr as calculated in (5.6) is actually the classical feedforward force. In the LMPC
problem we minimize the difference between the total force and the feedforward
force since the feedforward force results in zero tracking error given that the system
model is known exactly and there is no disturbance in the system.

Solving the LMPC problem 5.2.1, we get the optimal sequence of driving force
{w x

0 , . . . , w x
N−1}. The first element w x

0 of the sequence is used as the input for the
commutation block. The optimal commutation problem is formulated as follows

Problem 5.2.2 (Optimal commutation).

min
u0

(u0 −ur
0)�(u0 −ur

0)

subject to

Ψx (x0,u0) = w x
0 ,

Ψz (x0,u0) = 0,

Ψy (x0,u0) = 0,

umin ≤ u0 ≤ umax.

The optimal commutation problem 5.2.2 searches for a current vector u0 which
satisfies the current limit such that the desired forces and torques in all directions are
obtained. Furthermore, we minimize the difference between the input current u and
the reference input current ur , since ur as calculated in problem (5.8) is the input
with minimum power loss that produces the reference feedforward force w xr , which
results in zero tracking error given that the system model is known exactly and there
is no disturbance in the system. The resulting solution of the OC problem 5.2.2 is
then applied to the linear motor.

This control scheme requires solving two optimization problems, corresponding
to two sub-controllers. This is not the optimal setting, as the LMPC problem is not
aware of the physical limit of the current u0. Consequently, it may be infeasible
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for the commutation problem to obtain the force setpoint w x
0 given by the LMPC

solution. Furthermore, this scheme requires solving two optimization problems sep-
arately. The number of optimization variables and constraints of each problem is
summarized in Table 5.1.

Table 5.1: Number of variables and constraints of the Cascaded LMPC+OC scheme.

LMPC OC Total
Number of variables (nx +nw )N nu (nx +nw )N +nu

Number of equality constraints nx N 3 nx N +3
Number of inequality constraints (nx +nw )N nu (nx +nw )N +nu

5.2.2 Combined LMPC and optimal commutation

To avoid the drawbacks of solving two separate optimization problems, we introduce
the Combined LMPC+OC scheme which combines the LMPC problem 5.2.1 and the
optimal commutation problem 5.2.2 into a single optimization problem as shown in
Figure 5.2. The resulting optimization problem is formulated as follows

Problem 5.2.3 (Combined LMPC+OC).

min
x1,...,xN ,

w1,...,wN−1,
u0

(
xN −x∗N

)� P
(
xN −x∗N

)+N−1∑
i=0

(xi −x∗i )�Q(xi −x∗i )

+
N−1∑
i=1

(w x
i −w xr

i )�Rw (w x
i −w xr

i )+ (
u0 −ur

0

)� (
u0 −ur

0

)
subject to

xi+1 = Axi +B w x
i , ∀i = 0, . . . , N −1,

Ψx (x0,u0) = w x
0 ,

Ψz (x0,u0) = 0,

Ψy (x0,u0) = 0,

xmin ≤ xi ≤ xmax, ∀i = 1, . . . , N ,

w x
min ≤ w x

i ≤ w x
max, ∀i = 0, . . . , N −1,

umin ≤ u0 ≤ umax.

The resulting solution u0 is then applied to the linear motor. Compared to the
Cascaded LMPC+OC scheme, the Combined LMPC+OC scheme only requires solv-
ing a single optimization problem. Furthermore, the scheme is able to guarantee
constraint satisfaction and compensate for parasitic forces.

It is observed that in this scheme only the linear dynamics is used for prediction.
There is no prediction for the static nonlinearity part. Consequently, the future
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dynamics

Figure 5.2: Combined LMPC+OC scheme.

error caused by the static nonlinearity is neglected, which may result in reduced
performance. This limitation can be overcome by using the full nonlinear model for
prediction as proposed in the next section.

5.3 Nonlinear model predictive control

In this section the NMPC formulation for linear motor is presented. The NMPC
scheme is shown in Figure 5.3. This scheme also combines the MPC controller
and optimal commutation into a single optimization problem. But compared to
the Combined LMPC+OC scheme, the NMPC scheme uses the full nonlinear model
of the linear motor for prediction. The resulting NMPC optimization problem is
formulated as follows

NMPC

Controller

Linear motor

Electromagnetics
 

Motion
dynamics

Figure 5.3: NMPC scheme.
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Problem 5.3.1 (NMPC).

min
x1,...,xN ,

u0,u1,...,uN−1

(
xN −x∗N

)� P
(
xN −x∗N

)+N−1∑
i=0

(
xi −x∗i

)�Q
(
xi −x∗i

)

+
N−1∑
i=0

(
ui −ur

i

)� (
ui −ur

i

)
subject to

xi+1 = Axi +B w x
i , ∀i = 0, . . . , N −1,

Ψx (xi ,ui ) = w x
i , ∀i = 0, . . . , N −1,

Ψz (xi ,ui ) = 0, ∀i = 0, . . . , N −1,

Ψy (xi ,ui ) = 0, ∀i = 0, . . . , N −1,

xmin ≤ xi ≤ xmax, ∀i = 1, . . . , N ,

w x
min ≤ w x

i ≤ w x
max, ∀i = 0, . . . , N −1,

umin ≤ ui ≤ umax, ∀i = 0, . . . , N −1.

Solving the NMPC problem we obtain the optimal sequence of control inputs
{u0, . . . ,uN−1}. The first element u0 is then applied to the linear motor.

Similar to the Combined LMPC+OC scheme, the NMPC scheme is able to guar-
antee constraint satisfaction and compensate for parasitic forces. Compared to the
Combined LMPC+OC scheme, the NMPC scheme can result in better performance
as the future error caused by the static nonlinearity is also predicted and minimized.
However, its computational load is higher as the number of variables and constraints
increases, especially when the prediction horizon is high. The number of variables
and constraints in the NMPC scheme is summarized in Table 5.2.

Table 5.2: Number of variables and constraints of the MPC schemes.

Cascaded Combined NMPC
LMPC+OC LMPC+OC

Nvar (nx +nw )N +nu nx N +nw (N −1)+nu (nx +nu)N
Neq nx N +3 nx N +3 (nx +3)N
Nieq (nx +nw )N +nu nx N +nw (N −1)+nu (nx +nw +nu)N

A trade-off between performance and computational load can be made by defin-
ing a commutation horizon Nch. While the prediction of the linear dynamics is per-
formed for the whole prediction horizon N , the prediction of the static nonlinearity
part is only performed up to the commutation horizon Nch. The resulting control
problem is formulated as follows
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Problem 5.3.2 (NMPC with commutation horizon).

min
x1,...,xN ,

u0,u1,...,uNch−1,
wNch

,...,wN−1

(
xN −x∗N

)� P
(
xN −x∗N

)+N−1∑
i=0

(
xi −x∗i

)�Q
(
xi −x∗i

)

+
Nch−1∑

i=0

(
ui −ur

i

)� (
ui −ur

i

)+ N−1∑
i=Nch

(w x
i −w xr

i )�Rw (w x
i −w xr

i )

subject to

xi+1 = Axi +B w x
i , ∀i = 0, . . . , N −1,

Ψx (xi ,ui ) = w x
i , ∀i = 0, . . . , Nch −1,

Ψz (xi ,ui ) = 0, ∀i = 0, . . . , Nch −1,

Ψy (xi ,ui ) = 0, ∀i = 0, . . . , Nch −1,

xmin ≤ xi ≤ xmax, ∀i = 1, . . . , N ,

w x
min ≤ w x

i ≤ w x
max, ∀i = 0, . . . , N −1,

umin ≤ ui ≤ umax, ∀i = 0, . . . , N −1.

The higher the commutation horizon is, the better the performance is, but also
the higher the computational load gets. If the commutation horizon Nch = 1, we
recover the Combined LMPC+OC scheme. If Nch = N , we recover the NMPC scheme.

5.4 Simulation results

5.4.1 Simulation settings

In this section, a simulation example is presented for demonstration purpose. The
example motor has two sets of three-phase coils. As a results, we have 4 independent
inputs. The model of the static nonlinear part is given by

w x =Ψx (x,u) = K x (x)u,

w z =Ψz (x,u) = K z (x)u +u�Gz u,

w t =Ψt (x,u) = K t (x)u +u�Gt u,

The position-dependent matrices K i (x), with i = x, z, y , are [4×1] matrices given by

K i (x) =

⎡
⎢⎢⎢⎣

ci
1 cos

(
π
τp

x
)
+d i

1 sin
(
π
τp

x
)

...
ci

4 cos
(
π
τp

x
)
+d i

4 sin
(
π
τp

x
)
⎤
⎥⎥⎥⎦
�

, i = x, z, y, (5.10)
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where the parameters c and d are given in Table 5.3. The matrix Gz and G y are
[4×4] matrices given by

Gz =

⎡
⎢⎢⎢⎣

0.0128 0.0064 0.0045 0.0023
0.0064 0.0171 0.0023 0.0002
0.0045 0.0023 0.0128 0.0064
0.0023 0.0002 0.0064 0.0171

⎤
⎥⎥⎥⎦ , (5.11)

G y =

⎡
⎢⎢⎢⎣
−0.0100 −0.0010 0 0
−0.0010 −0.0090 0 0

0 0 0.0100 0.0090
0 0 0.0090 0.0180

⎤
⎥⎥⎥⎦ . (5.12)

Table 5.3: Parameters of the example linear motor.

Para- Value Para- Value
meter meter

cx
1 0.7593 d x

1 77.9009
cx

2 66.5087 d x
2 38.0571

cx
3 -3.5733 d x

3 77.8116
cx

4 67.8933 d x
4 38.2358

cz
1 -0.8811 d z

1 0.2941
cz

2 -0.1817 d z
2 0.2116

cz
3 -1.0782 d z

3 0.1265
cz

4 -0.2469 d z
4 1.0145

c y
1 -0.8235 d y

1 0.2795
c y

2 -0.4406 d y
2 0.8104

c y
3 0.0068 d y

3 0.1204
c y

4 -0.1287 d y
4 0.0260

The linear dynamical system in the x-direction is a mass-damper system:

G(s) = 1

ms2 +d s
, (5.13)

where m is the mass of the translator and d is the damping coefficient. In this
example we used m = 2 kg and d = 100 kg/s. The driving force limit is ±5000 N. The
current limit is ±30 A. The sampling rate of the control loop is 1 kHz.

In this example we simulate the step responses of four control schemes: classi-
cal scheme, Cascaded LMPC+OC scheme, Combined LMPC+OC scheme and NMPC
scheme. The step reference is chosen since it is the most aggressive reference tra-
jectory and hence it is a good test for performance and constraints handling ability.
The control schemes are simulated in Matlab on a 2.4 GHz computer. The controller
settings are chosen as follows.
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Classical controller

Instead of a simple PID controller, we use a higher-order linear controller for better
performance. The linear feedback controller C (s) is designed using the loop-shaping
technique and is given by

C (s) = 320s2 +6912s +2.388×104

3.029×10−6s3 +0.001658s2 +0.2315s
. (5.14)

The classical commutation is implemented as described in Section 4.2.

MPC controllers

In all the MPC schemes, the prediction horizon is N = 8. The weighting matrices are
Q = diag(108,1) and Rw = 10−4. The terminal cost P is calculated as the solution of
the discrete-time Lyapunov equation of the linear dynamics. Optimization problems
are solved using the commercial solvers Knitro and IPOPT [16, 109]. The solver
are interfaced to Matlab via YALMIP [59]. The solution of the MPC problem at a
time sample is used as the "warm-start" initial point for the MPC problem next time
sample.

5.4.2 Results

Classical control

The simulation results of the classical control scheme are shown in Figure 5.4. It
can be seen that there are high parasitic normal force and torque. The driving
force and the currents violate the limits since there is no mechanism to guarantee
constraint satisfaction. In practice, the currents can be saturated at the limit for
safety. However, this approach lowers the performance of the motor and may even
lead to instability.

The average computation time of the position controller is 0.06 ms. The average
computation time of the classical commutation algorithm is 0.06 ms. In total, the
computation time of the whole controller per sample is 0.12 ms.

Cascaded LMPC+OC

During simulation, the optimal commutation problem becomes infeasible as the
driving force setpoint given by the LMPC controller is unachievable due to the cur-
rent limit. If we remove the limit on the currents then both the LMPC and optimal
commutation problems are feasible. The simulation results are shown in Figure 5.5.
It is observed that the parasitic normal force and the parasitic torque are compen-
sated. However, the currents go beyond their limit.

The average computation time of the LMPC problem is 11.67 ms. The average
computation time of the optimal commutation problem is 11.22 ms. In total, the
avarage computation time of the whole controller per sample is 22.89 ms.
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Figure 5.4: Simulation results of classical
scheme.

Figure 5.5: Simulation results of Cascaded
LMPC+OC scheme.

Combined LMPC+OC

The simulation results of the Combined LMPC+OC scheme are shown in Figure 5.6.
Similar to the Cascaded LMPC+OC scheme, the parasitic force and torque in the
non-driving directions are compensated. But in contrast to the Cascaded LMPC+OC
scheme, the Combined LMPC+OC scheme is able to keep the input currents within
their limits. However, the average computation time of of the Combined LMPC+OC
problem is 66.45 ms, which is higher than that of the Cascaded LMPC+OC scheme.

NMPC

The simulation results of the NMPC scheme are shown in Figure 5.7. It can be seen
that the parasitic forces in non-driving directions are compensated, similar to the
two LMPC+OC schemes. The driving force and the currents are kept within their
limits. The average computation time of the NMPC problem is 93.21 ms, which is
the highest of all schemes.
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Figure 5.6: Simulation results of Combined
LMPC+OC scheme.

Figure 5.7: Simulation results of NMPC
scheme.

5.4.3 Analysis

Figure 5.8 shows the step responses of all the control schemes. It is observed
that the performance of the MPC schemes is more or less comparable. The Cas-
caded LMPC+OC scheme gives the fastest response, but it has to violate the current
limit. The NMPC scheme gives a slightly faster response compared to the Com-
bined LMPC+OC scheme, since it minimizes the predicted error caused by the static
nonlinearity.

Table 5.4 summarizes the properties of all the control schemes. It is noted that
we solve the MPC problems using two solvers Knitro and IPOPT. The best computa-
tion time is reported in the table. It is observed that the classical scheme requires the
least computational load, while the NMPC scheme needs the highest computational
effort.

Regarding parasitic effects, all the MPC schemes are able to compensate for para-
sitic forces and torques in non-driving directions, while the classical scheme cannot.
Among all the schemes, only the Combined LMPC+OC and NMPC schemes are ca-
pable of guaranteeing constraint satisfaction. The classical control scheme does not
have a constraints handling mechanism. Consequently, the constraints are violated
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Figure 5.8: Step responses of the four control schemes.

Figure 5.9: Driving forces of the four control schemes.

as shown in Figure 5.4. In the Cascaded LMPC+OC scheme, the LMPC controller is
not aware of the current limit and may ask for a high force which is not feasible due
to the current limit.

Figure 5.9 shows the comparison of the driving force in the four control schemes.
It can be seen that in the Cascaded LMPC+OC scheme, at some points the LMPC
controller asks for maximum driving force, which is unachievable at those points
given the current limit. This leads to infeasibility of the optimal commutation prob-
lem. On the other hand, the Combined LMPC+OC scheme and NMPC scheme are
well aware of the current limit and only asks for smaller force, making the problem
feasible.
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From the simulation results, it is observed that the Combined LMPC+OC is the
best among the three MPC schemes. Similar to the NMPC scheme, it is able to com-
pensate for parasitic force, guarantee constraint satisfaction. Although the NMPC
scheme deliver slightly better performance, the Combined LMPC+OC scheme re-
quires lower computation time, especially for high prediction horizon.

Table 5.4: Simulation results of the control schemes

Classical Cascaded Combined NMPC
LMPC+OC LMPC+OC

Average computation 0.12 22.89 66.45 93.21
time [ms]
Non-driving force No Yes Yes Yes
compensation
Force constraints No Yes Yes Yes
Current constraints No No Yes Yes

5.5 Conclusions

In this chapter we analyze the drawbacks of the Cascaded LMPC+OC scheme. The
Cascaded LMPC+OC scheme is obtained by simply replacing the classical controllers
with LMPC and optimal commutation. This scheme requires solving two separate
optimization problems, one for LMPC and one for optimal commutation. Due to the
separation, the scheme cannot guarantee current constraint satisfaction since the
LMPC problem is not aware of the current limit.

To address this problem, we introduce two new MPC schemes for linear motors,
which are the Combined LMPC+OC scheme and the NMPC scheme. The introduced
MPC schemes are able to compensate for parasitic forces and torques and also guar-
antee constraint satisfaction. The Combined LMPC+OC scheme combines the LMPC
problem and optimal commutation problem into a single optimization problem. As
a result, the constraint satisfaction can be guaranteed. However, the error caused
by the static nonlinearity is not predicted and therefore not minimized. The NMPC
scheme includes the full nonlinear model for prediction and therefore delivers better
performance, at the price of higher computational effort. The effectiveness of the
new MPC schemes has been demonstrated in a simulation example.

For high prediction horizon, the designed MPC schemes require a high compu-
tational effort. This makes it difficult to apply the MPC schemes to real CLMs with
fast sampling rates where the time for computation is limited. In the next chap-
ter we address this problem by developing a computationally efficient optimization
algorithm.





Chapter 6
A sequential quadratic
programming method with
arbitrary Hessian approximation

6.1 Introduction

The optimal commutation and NMPC techniques developed in the previous chapters
require solving nonlinear optimization problems online, which is in general compu-
tationally costly. This makes it challenging to apply these control techniques to a
real linear motor where the sampling rate is high, typically in the kHz range, and
the time for computation is thus limited. To address this problem, in this chapter we
develop a computationally efficient optimization algorithm which can be considered
as a variant of Sequential Quadratic Programming (SQP).

SQP is one of the most effective methods for solving nonlinear optimization
problems. The main idea of SQP is to iteratively approximate the Nonlinear Pro-
gramming (NLP) problem by a sequence of Quadratic Programming (QP) subprob-
lems [15]. The QP subproblems should be constructed in a way that the resulting
sequence of solutions converges to a local optimum of the NLP.

There are different ways to construct the QP subproblems. When the exact Hes-
sian is used to construct the QP subproblems, local convergence with quadratic con-
vergence rate is guaranteed. However, the true Hessian can be indefinite when far

Part of the content of this chapter has been published in:

• T. T. Nguyen, M. Lazar and H. Butler, “A method to guarantee local convergence for sequential
quadratic programming with poor Hessian approximation,” in IEEE 56th Conference on Decision
and Control (CDC), Melbourne, 2017.

• T. T. Nguyen, M. Lazar and H. Butler, “A Hessian-free algorithm for solving quadratic optimization
problems with nonlinear equality constraints,” in IEEE 55th Conference on Decision and Control
(CDC), Las Vegas, NV, 2016.
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from the solution. Consequently, the QP subproblems are non-convex and gener-
ally difficult to solve, since the objective may be unbounded below and there may
be many local solutions [33]. Moreover, computing the exact Hessian is generally
expensive, which makes SQP with exact Hessian difficult to apply to large-scale
problems and real-time applications.

To overcome these drawbacks, positive (semi-) definite Hessian approximations
are usually used in practice. SQP methods using Hessian approximations generally
guarantee local convergence under some assumptions. Some SQP variants employ
iterative updates scheme for the Hessian approximation to keep it close to the true
Hessian. Broyden-Fletcher-Goldfarb-Shanno (BFGS) is one of the most popular up-
date schemes of this type [27, 82]. The BFGS version of SQP guarantees super-
linear convergence when the initial Hessian estimate is close enough to the true
Hessian [15]. Another variant which is very popular for constrained nonlinear least
squares problems is the generalized Gauss-Newton (GGN) method [13, 14]. GGN
method converges locally only if the residual function is small at the solution [21].
Some other SQP variants belong to the class of sequential convex programming
(SCP), or sequential convex quadratic programming (SCQP) methods, which ex-
ploit convexity in either the objective or the constraint functions to formulate con-
vex QP subproblems [23, 108]. SCP methods also have local convergence under
similar assumption of small residual function. However, these assumptions are not
always satisfied in practice, resulting in poor Hessian approximation and thus no
convergence is guaranteed.

In this chapter, we introduce a simple method to guarantee local convergence for
SQP methods with poor Hessian approximations. In this method, the search direc-
tion is taken as the interpolation between the search direction provided by solving
the QP subproblem and a feasible search direction. It will be proved that there
exist suitable interpolation coefficients such that the resulting algorithm converges
locally to a local optimum of the NLP with linear convergence rate. To guarantee
convergence from any initial point, we employ the strategy for global convergence
presented in [32], with a slight modification. Numerical examples are presented to
demonstrate the effectiveness of the new optimization method.

The idea of interpolating an optimal search direction with a feasible search di-
rection was first introduced in our previous work for quadratic optimization prob-
lems with nonlinear equality constraints [69]. The method presented in [69] has
been applied effectively to a practical application in commutation of linear motors
in Chapter 4. In the current chapter, the idea is extended to general nonlinear pro-
gramming problems.

The remainder of this chapter is organized as follows. Section 6.2 presents the
formulation and the optimality conditions of the generic NLP that is considered in
this chapter. In Section 6.3, the basic SQP method for solving NLPs is discussed. In
Section 6.4, we introduce our new variant of SQP and prove its optimality property.
The local convergence property of the new method is proved in Section 6.5. In
Section 6.6, a strategy for global convergence is presented. Section 6.7 discusses
the treatment of inequality constraints. Two numerical examples are presented in
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Section 6.8 to demonstrate the effectiveness of the new optimization method. The
conclusions are summarized in Section 6.9.

6.1.1 Notation

Let N denote the set of natural numbers, R denote the set of real numbers. The
notation R[c1,c2) denotes the set {c ∈ R : c1 ≤ c < c2}. Let Rn denote the set of real
column vectors of dimension n, Rn×m denote the set of real n ×m matrices. For a
vector x ∈Rn , x[i ] denotes the i -th element of x. The notation 0n×m denotes the n×m
zero matrix and In denotes the n×n identity matrix. Let ‖·‖ denote the 2-norm. The
Nabla symbol ∇ denotes the gradient operator. For a vector x ∈ Rn and a mapping
Φ : Rn →R

∇xΦ(x) =
[
∂Φ(x)
∂x[1]

∂Φ(x)
∂x[2]

. . . ∂Φ(x)
∂x[n]

]�
.

Let B(x0,r ) denote the open ball {x ∈Rn : ‖x −x0‖2 < r }.

6.2 Nonlinear programming problem

In this chapter we consider the generic constrained nonlinear programming problem
of the following form

Problem 6.2.1 (NLP).

min
x∈Rn

f (x)

s.t. g (x) = 0

h(x) ≤ 0,

where f : Rn →R, g : Rn →Rmg and h : Rn →Rmh are twice continuously differentiable
and possibly nonconvex. Here, n denotes the number of optimization variables, mg

denotes the number of equality constraints and mh denotes the number of inequality
constraints.

The KKT first-order optimality conditions of the NLP Problem 6.2.1 are [75]

∇ f (x∗)+∇g (x∗)μ∗ +∇h(x∗)ν∗ = 0 (6.1a)

g (x∗) = 0 (6.1b)

h(x∗) ≤ 0 (6.1c)

ν[i ]∗ ≥ 0, ∀i = 1, ...,mh (6.1d)

ν[i ]∗h[i ](x∗) = 0, ∀i = 1, ...,mh , (6.1e)

where μ ∈Rmg and ν ∈Rmh are the Lagrange multipliers vectors. Here, x∗ denotes a
local optimum of the NLP, μ∗ and ν∗ denotes its corresponding vectors of Lagrange
multipliers.
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For ease of presentation, in the next sections we only consider equality con-
straints. The treatment of inequality constraints will be discussed in Section 6.7.
The NLP with equality constraints has the following form

Problem 6.2.2 (NLP with equality constraints).

min
x∈Rn

f (x)

s.t. g (x) = 0m×1.

The Lagrangian function of the problem is defined as

L (x,λ) = f (x)+λ�g (x). (6.2)

where λ ∈ Rm is the vector of Lagrange multipliers and m is the number of equality
constraints. The KKT optimality condition of Problem 6.2.2 is [75]

∇L (x∗,λ∗) = 0(n+m)×1, (6.3)

or equivalently

∇ f (x∗)+∇g (x∗)λ∗ = 0n×1, (6.4a)

g (x∗) = 0m×1. (6.4b)

The solution of the NLP is generally searched for in an iterative way. At a current
iterate xk , the next iterate is computed as

xk+1 = xk + tkΔxk , (6.5)

where Δxk is the search direction and tk ∈ R(0,1) is the stepsize, also known as the
steplength. Different optimization methods have different ways to calculate the
search direction such that the iteration eventually converges to a local minimum of
the optimization problem. In the next section, we review the basic SQP method,
which is one of the most powerful methods for solving nonlinear optimization prob-
lems. Furthermore, our new variant of SQP, which is designed to improve the com-
putational efficiency of the method, is introduced and analyzed.

6.3 Basic sequential quadratic programming

In this section we review the basic SQP method for solving nonlinear optimization
problems. In SQP method, the NLP is approximated by a sequence of QP subprob-
lems. At an iteration k ∈N, the search direction ΔxQP

k is the solution of the following
QP subproblem

min
Δxk∈Rn

1

2
Δx�

k BkΔxk +∇ f (xk )�Δxk

s.t. ∇g (xk )�Δxk + g (xk ) = 0.
. (6.6)
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Here, Bk ∈ Rn×n is either the exact Hessian of the Lagrangian ∇L (xk ,λk ), or a posi-
tive (semi-) definite approximation of the Hessian. Similar to [15], to guarantee that
the QP subproblem has a unique solution, we assume that the matrices Bk satisfy
the following conditions:

Assumption 6.3.1. The matrices Bk are uniformly positive definite on the null spaces
of the matrices ∇g (xk )�, i.e., there exists a β1 > 0 such that for each k

d�Bk d ≥β1‖d‖2,

for all d ∈Rn which satisfy

∇g (xk )�d = 0.

Assumption 6.3.2. The sequence {Bk } is uniformly bounded, i.e, there exists a β2 > 0
such that for each k

‖Bk‖ ≤β2.

Furthermore, let us assume that the linear independence constraint qualification
(LICQ) holds at each k.

Assumption 6.3.3 (LICQ). For all k, the columns of ∇g (xk ) are linearly independent.

Given that the above assumptions hold, the QP subproblem can be solved as
follows. The KKT optimality conditions of the QP subproblem (6.6) are

BkΔxQP
k +∇ f (xk )+∇g (xk )λQP

k+1 = 0n×1, (6.7a)

∇g (xk )�ΔxQP
k + g (xk ) = 0m×1, (6.7b)

or equivalently

[
Bk ∇g (xk )

∇g (xk )� 0m×m

][
ΔxQP

k
λ

QP
k+1

]
=−

[∇ f (xk )
g (xk )

]
. (6.8)

It should be noted that Bk is positive (semi-) definite and is not necessarily invert-

ible, but the matrix
[

Bk ∇g (xk )�

∇g (xk ) 0m×m

]
is invertible due to Assumptions 6.3.1 and

6.3.3 [11, Theorem 3.2]. Therefore, the KKT condition (6.8) has a unique solution[
ΔxQP

k
λ

QP
k+1

]
=−

[
Bk ∇g (xk )

∇g (xk )� 0m×m

]−1 [∇ f (xk )
g (xk )

]
. (6.9)

For brevity, let us denote

Wk :=
[

Bk ∇g (xk )
∇g (xk )� 0m×m

]
.
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In addition, let Gk denote the [n ×n] leading principal submatrix of W −1
k

Gk := [
In 0n×m

]
W −1

k

[
In

0m×n

]
.

If Bk is the exact Hessian then the basic SQP method is equivalent to applying
Newton’s method to solve the KKT conditions (6.4), which guarantees quadratic
local convergence rate [75, Chapter 18]. When an approximation is used instead,
local convergence is guaranteed only when Bk is close enough to the true Hessian at
the solution [15]. In [108], it is proved that the basic SQP method converges locally
if and only if the Hessian approximation at the solution lies inside a certain region
around the true Hessian at the solution.

6.4 Sequential quadratic programming with arbitr-
ary Hessian approximation

The basic SQP method converges only if the Hessian approximation is close to the
true Hessian. However, a good Hessian approximation can be expensive to com-
pute. To address this problem, we introduce a variant of SQP which guarantees
local convergence for arbitrary (semi-) positive definite Hessian approximation. In
this method, the search iteration is chosen as the interpolation between an optimal
search iteration, without local convergence guarantee, and a feasible search itera-
tion with guaranteed local convergence.

The search direction ΔxQP
k can be viewed as an optimal direction which itera-

tively leads to the optimal solution of the NLP, if the iteration converges. However,
local convergence is not guaranteed if Bk is a poor approximation of the true Hes-
sian. To guarantee local convergence with poor Hessian approximation, we intro-
duce a new search direction which is the interpolation between the optimal search
direction ΔxQP

k and a feasible search direction Δxf
k , i.e.

Δxk =αΔxQP
k + (1−α)Δxf

k , (6.10)

where α ∈ R(0,1) is the interpolation coefficient. The feasible search direction Δxf
k

only searches for a feasible solution of the set of constraints, but its local conver-
gence is guaranteed. The idea of this new interpolated update is to combine the
optimality property of the SQP update and the local convergence property of the
feasible update.

The feasible search direction can be found as a solution of the linearized con-
straints

∇g (xk )�Δxf
k + g (xk ) = 0m×1. (6.11)

Since m < n, there is an infinite number of solutions for (6.11). We propose the
following feasible search direction

Δxf
k =−∇g (xk )†g (xk ), (6.12)
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where ∇g (xk )† ∈ Rn×m is the Moore-Penrose generalized right inverse of ∇g (xk )�

[84], i.e.

∇g (xk )† :=∇g (xk )(∇g (xk )�∇g (xk ))−1.

Since ∇g (xk )�∇g (xk )† = Im , by multiplying ∇g (xk )� to the left of both sides of equa-
tion (6.12), it can be easily verified that Δx f

k is a solution of (6.11). It has been
proven that the feasible update (6.12) converges locally to a feasible solution of the
constraints [55].

In summary, at a current iterate xk , the next iterate is the interpolation between
the SQP iterate and a feasible iterate. The resulting interpolated update is

xk+1 =xk + tkΔxk

=xk + tk

(
αΔxQP

k + (1−α)Δxf
k

)
. (6.13)

In what follows we will prove the optimality property of the iteration (6.13).

Theorem 6.4.1. Iteration (6.13) converges to a fixed point x∗, i.e. ‖Δx∗‖ = 0, if and
only if x∗ satisfies the KKT optimality conditions (6.4).

Proof. First, we will prove that if ‖Δx∗‖ = 0 then x∗ satisfies the KKT optimality
conditions (6.4). Since ΔxQP

k satisfies (6.7b) and Δx f
k satisfies (6.11), it follows that

∇g (xk )�Δxk + g (xk ) = 0m×1. (6.14)

Therefore, if ‖Δx∗‖ = 0 then we have

g (x∗) = 0m×1. (6.15)

Substituting (6.15) into (6.12) results in Δxf∗ = 0n×1. Consequently, due to (6.10)
we also have ΔxQP

∗ = 0n×1. As a result, it follows from (6.7a) that

∇ f (x∗)+∇g (x∗)λ∗ = 0n×1. (6.16)

From (6.15) and (6.16), it can be concluded that x∗ satisfies the KKT optimality
conditions (6.4).

Now we will prove that if x∗ satisfies the KKT optimality conditions (6.4) then
‖Δx∗‖ = 0. Substituting (6.4) into (6.7) yields

BkΔxQP
∗ = 0n×1, (6.17)

∇g (x∗)�ΔxQP
∗ = 0m×1, (6.18)

Due to Assumption 6.3.1, this only holds when ΔxQP
∗ = 0n×1. Furthermore, substitut-

ing (6.4b) into (6.14) leads to Δxf∗ = 0n×1. As Δx∗ is an interpolation between ΔxQP
∗

and Δxf∗, we have ‖Δx∗‖ = 0.
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6.5 Local convergence

An algorithm is locally convergent if it converges to a local minimum of the problem
with unit stepsize, i.e. tk = 1, given that the initial point is close enough to the local
minimum. In this section we will prove the local convergence property of the search
iteration (6.13) with unit stepsize, i.e.

xk+1 = xk +αΔxQP
k + (1−α)Δxf

k . (6.19)

The following lemmas will be used in the proof.

Lemma 6.5.1. Let D ⊆ Rn be a convex set in which g : D → Rm is differentiable and
∇g (x) is Lipschitz continuous for all x ∈D, i.e. there exists a γ> 0 such that

‖∇g (x)−∇g (y)‖ ≤ 2γ‖x − y‖, ∀x, y ∈D. (6.20)

Then

‖g (x)− g (y)−∇g (y)(x − y)‖ ≤ γ‖x − y‖2, ∀x, y ∈D. (6.21)

A proof of 6.5.1 can be found in [55].

Lemma 6.5.2. Let D be a subset of Rn where ∇g (xk ) and ∇g (xk )† are well defined. For
any x ∈D, it holds that

‖In −∇g (xk )†∇g (xk )‖ = 1. (6.22)

Proof. Let us denote A := In −∇g (xk )†∇g (xk ). It can easily be verified that A is a
Hermitian idempotent matrix, i.e.

A� = A, (6.23)

A A = A. (6.24)

Let �i be an eigenvalue of A�A, then �i satisfies

�i x = A�Ax

= A�A(A�Ax)

= A�A(�i x)

= �i (A�Ax)

= �2
i x, ∀x ∈D. (6.25)

This results in

�i = �2
i , (6.26)

which means that �i is equal to either 0 or 1. If A�A is a nonzero matrix then at
least one eigenvalue is 1. The 2-norm of A is defined as the maximum singular value
of A. This is equal to the square root of the maximum eigenvalue of A�A, which is
equal to 1.
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In the following theorem we will prove the local convergence property of the
iteration (6.19).

Theorem 6.5.3. Let D =B (x∗,r ), where r > 0, be a neighborhood of x∗ in which the
following conditions hold

1. f (x) and g (x) are Lipschitz continuous and continuosly differentiable,

2. ∇g (x) is Lipschitz continuous and bounded,

3. ∇g (x)† is Lipschitz continuous and bounded,

4. W −1
k is bounded for all k,

Let the initialization x0 ∈ D be close enough to x∗. Then there exists a α ∈ R(0,1) such
that iteration (6.19) converges to x∗.

Proof. Let us consider two cases

• g (x) is linear.

• g (x) is nonlinear.

1. Case 1: in the first case when g (x) is linear, for any iterate xk we can write

g (x) = g (xk )+∇g (xk )�(x −xk ). (6.27)

It follows that

g (xk+1) = g (xk )+∇g (xk )�(xk+1 −xk ) = 0m×1, (6.28)

where the last equality follows from (6.14). Therefore, we have that g (xk ) = 0m×1

for all k ≥ 1. The interpolated update is then reduced to

xk+1 = xk +αΔxQP
k , ∀k ≥ 1. (6.29)

Substituting g (xk ) = 0m×1 into (6.9) we have

ΔxQP
k =−Gk∇ f (xk ), ∀k ≥ 1. (6.30)

We have that Wk is positive definite due to Assumption 6.3.1. It follows that Gk

is positive definite, due to the facts that the inverse of a positive definite matrix is
positive definite, and that every principal submatrix of a positive definite matrix is
positive definite [12, Chapter 8]. As a result we have

∇ f (xk )�ΔxQP
k =−∇ f (xk )�Gk∇ f (xk ) < 0, ∀k ≥ 1. (6.31)

This shows that ΔxQP
k is a descent direction that leads to a decrease in the cost

function f (x). In addition, since g (xk ) = 0m×1 for all k ≥ 1, we have that ΔxQP
k is
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also a feasible direction. Therefore, there exists a stepsize α ∈ R(0,1) such that the
iteration (6.29) converges [75, Chapter 3].

2. Case 2: let us now consider the case when g (x) is nonlinear. Since the non-
linear constraints are solved by successive linearization (6.14), we can assume that
the solution is reached asymptotically, i.e. g (xk ) → 0 as k →∞ and g (xk ) �= 0m×1 for
all k <∞.

Let us first analyze ΔxQP. Subtracting
[

x∗
λ∗

]
to both sides of (6.9) results in

[
xQP

k+1 −x∗
λ

QP
k+1 −λ∗

]

=
[

xk −x∗
−λ∗

]
−W −1

k

[∇ f (xk )
g (xk )

]

=W −1
k

(
Wk

[
xk −x∗
−λ∗

]
−
[∇ f (xk )

g (xk )

])

=W −1
k

[
Bk (xk −x∗)− (∇ f (xk )+∇g (xk )λ∗)

∇g (xk )�(xk −x∗)− g (xk )

]

=W −1
k

[
Bk (xk −x∗)− (∇ f (xk )+∇g (xk )λ∗ −∇ f (x∗)−∇g (x∗)λ∗)

−(
g (xk )− g (x∗)−∇g (xk )�(xk −x∗)

) ]

=W −1
k

[(
Bk −∇2 f (x∗)−∑m

i=1∇2g[i ](x∗)λi∗
)

(xk −x∗)
−(

g (xk )− g (x∗)−∇g (xk )�(xk −x∗)
) ]

+
[
O (‖xk −x∗‖2)

0

]

=W −1
k

[(
Bk −∇2L∗

)
(xk −x∗)

0

]
+
[
O (‖xk −x∗‖2)
O (‖xk −x∗‖2)

]
. (6.32)

Note that in the above derivation we use the following Taylor series expansion

∇ f (xk )−∇ f (x∗) =∇2 f (x∗)(xk −x∗)+O (‖xk −x∗‖2), (6.33)

∇g (xk )λ∗ −∇g (x∗)λ∗ =
m∑

i=1
∇2gi (x∗)λi∗(xk −x∗)+O (‖xk −x∗‖2). (6.34)

It follows that

xQP
k+1 −x∗ =Gk

(
Bk −∇2L∗

)
(xk −x∗)+O (‖xk −x∗‖2). (6.35)

Due to the condition that W −1
k and Bk are bounded, there exists a constant N > 0

such that

‖Gk
(
Bk −∇2L∗

)
(xk −x∗)‖ ≤ N‖(xk −x∗)‖. (6.36)

Now let us consider Δx f . From (6.12) we have

xf
k+1 −x∗ =xk −x∗ −∇g (xk )†g (xk )

=xk −x∗ −∇g (xk )†g (xk )+
(
0.5∇g (x∗)†g (xk )−0.5∇g (x∗)†g (xk )

)
=xk −x∗ −0.5∇g (xk )†g (xk )−0.5∇g (x∗)†g (xk )

−0.5(∇g (xk )† −∇g (x∗)†)g (xk ). (6.37)
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Notice that g (xk ) can be written as

g (xk ) = g (xk )− g (x∗) =∇g (xk )�(xk −x∗)+O (‖xk −x∗‖2), (6.38)

and also as

g (xk ) = g (xk )− g (x∗) =∇g (x∗)�(xk −x∗)+O (‖xk −x∗‖2). (6.39)

In addition, due to the Lipschitz continuity of ∇g (x)†, we have

∇g (xk )† −∇g (x∗)† =O (‖xk −x∗‖). (6.40)

It follows that

0.5(∇g (xk )† −∇g (x∗)†)g (xk ) =O (‖xk −x∗‖2). (6.41)

Equation (6.37) can then be rewritten as

xf
k+1 −x∗ =0.5(In −∇g (xk )†∇g (xk )�)(xk −x∗)

+0.5(In −∇g (x∗)†∇g (x∗)�)(xk −x∗)+O (‖xk −x∗‖2). (6.42)

Here, (In−∇g (xk )†∇g (xk )�) and (In−∇g (x∗)†∇g (x∗)�) are the orthogonal projections
onto the null space of ∇g (xk )� and ∇g (x∗)�, respectively [12, Chapter 6]. Applying
the result of Lemma 6.5.2 to (6.42), it follows that

‖0.5
(
In −∇g (xk )†∇g (xk )�+ In −∇g (x∗)†∇g (x∗)�

)
(xk −x∗)‖ ≤ ‖xk −x∗‖. (6.43)

The equality holds if and only if (xk − x∗) is in the null spaces of both ∇g (xk ) and
∇g (x∗), i.e.

Γ(xk ) =∇g (xk )�(xk −x∗) = 0, (6.44)

Γ(x∗) =∇g (x∗)�(xk −x∗) = 0, (6.45)

where Γ : Rn →R is defined as follows

Γ(x) =∇g (x)�(xk −x∗).

Since ∇g (x)� is Lipschitz continuous and bounded in D, it follows that Γ(x) is also
Lipschitz continuous in D. Due to the Lipschitz continuity of Γ(x), if D is small
enough then (6.44) and (6.45) both hold if and only if Γ(x) = 0 for all x in the
line segment between xk and x∗. This means that g (x) is neither increasing nor
decreasing in the line segment between xk and x∗, i.e. g (xk ) = g (x∗) = 0m×1, which
contradicts the assumption that g (xk ) �= 0 for all k < ∞. Therefore, there exists a
constant M ∈R(0,1) such that

‖0.5(In −∇g (xk )†∇g (xk )�+ In −∇g (x∗)†∇g (x∗)�)(xk −x∗)‖ ≤ M‖xk −x∗‖. (6.46)
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It follows from (6.35) and (6.42) that

xk+1 −x∗ =αGk
(
Bk −∇2L∗

)
(xk −x∗)

+ (1−α)0.5(I −∇g (xk )†∇g (xk )�)(xk −x∗)

+ (1−α)0.5(I −∇g (x∗)†∇g (x∗)�)(xk −x∗)+O (‖xk −x∗‖2).

(6.47)

From (6.47), (6.36) and (6.46) we have

‖xk+1 −x∗‖ ≤(αN + (1−α)M)‖xk −x∗‖+L‖xk −x∗‖2

≤ (αN +M︸ ︷︷ ︸
=:K

+L‖xk −x∗‖)

︸ ︷︷ ︸
=:Q

‖xk −x∗‖, (6.48)

where L > 0. We have K < 1 for any α that satisfies

0 <α< min

(
1−M

N
,1

)
. (6.49)

When K < 1, for a sufficiently close initial estimate such that

‖x0 −x∗‖ < 1−K

L
, (6.50)

we have Q < 1 and the iteration converges at a linear rate to x∗ due to the contraction
mapping theorem.

The proposed method can be applied to any positive (semi-) definite Hessian
approximations which satisfy Assumption 6.3.1 and Assumption 6.3.2. Popular Hes-
sian approximations such as BFGS, GGN, SCP generally satisfy these conditions.
It is worth noting that the simple identity approximation Bk = In also satisfies the
mentioned conditions.

The proposed method therefore can be useful in some of the following situations.
When the exact Hessian is indefinite or is too expensive to compute and the search it-
eration using Hessian approximations fails to converge, the proposed method can be
used to enforce convergence. For large-scale cases when even Hessian approxima-
tions are computationally costly, the simple identity Hessian approximation Bk = In

can be used together with the proposed interpolation method. This results in the
same search iteration as proposed in [102,103], although the iteration and conver-
gence therein have been derived in a different way. Furthermore, if the cost function
is just the 2-norm f (x) = x�x and the identity Hessian approximation is used then
the proposed algorithm recovers the algorithm in our previous work [69], which
has been applied successfully to the commutation problem in Chapter 4. It should
be noted, however, that the identity Hessian approximation may result in a slow
convergence rate, as can be seen in the example in Section 6.8.

An alternative method to guarantee local convergence for SQP with arbitrary
positive (semi-) definite Hessian approximation is to scale up the Hessian approx-
imation such that it is greater than a certain lower bound given in [108] at the
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solution. Our method follows a different strategy which uses the arbitrary Hes-
sian approximation to generate an SQP search direction, and then interpolates this
search direction with a feasible search direction.

6.6 Global convergence

An algorithm is globally convergent if it converges to a local optimum from any
arbitrary initial point. SQP algorithms with an unit stepsize, i.e. tk = 1, generally
only guarantee local convergence, which means that the initial point must be close
enough to a local minimum for the iteration to converge. In order to obtain global
convergence, a common approach is to use an augmented Lagrangian merit function
and a line search algorithm to monitor the progress of convergence.

In this chapter we employ the strategy for global convergence described in [32].
Similar to [32], we make the following assumptions.

Assumption 6.6.1. For all k ∈ N, xk and xk +Δxk lie in a closed, bounded region
Ω⊂Rn .

Assumption 6.6.2. The functions f (x), g (x) and their first derivatives are uniformly
bounded in Ω.

The augmented Lagrangian merit function is defined as follows

Laug(x,λ,ρ) := f (x)+λ�g (x)+ 1

2
ρg (x)�g (x), (6.51)

where ρ ≥ 0 is a penalty parameter. At an iteration k, the new values of x and λ are
defined by[

xk+1

λk+1

]
=

[
xk

λk

]
+ tk

[
Δxk

Δλk

]
. (6.52)

Here, the search direction Δxk is computed from (6.10) and Δλk is defined as

Δλk =λ
QP
k+1 −λk , (6.53)

where λ
QP
k+1 is computed from (6.9). We introduce the following notation for brevity.

Let φ(t ,ρ) denote the augmented Lagrangian merit function as a function of the
stepsize t

φ(t ,ρ) :=Laug
(
x + tΔx,λ+ tΔλ,ρ

)
. (6.54)

The notation φ′(t ,ρ) denotes the derivative of φ(t ,ρ) with respect to t .
The strategy for global convergence is similar to the one presented in [32], with

just a slight modification. The strategy is described by the following algorithm.

Algorithm 6.6.3 (Global convergence algorithm). At any iteration k, the following
steps are performed:
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1. Calculate Δxk from (6.10) and Δλk from (6.53).

2. Find ρk > 0 such that

φ′(0,ρk ) ≤−γΔx�
k Δxk , (6.55)

where γ> 0.

3. Compute the stepsize tk ∈ (0,1) via line search that satisfies the Wolfe condi-
tions [75]

φ(tk ,ρk )−φ(0,ρk ) ≤σ1tkφ
′(0,ρk ), (6.56)

‖φ′(tk ,ρk )‖ ≤−σ2φ
′(0,ρk ), (6.57)

where 0 <σ1 <σ2 < 1.

4. Update x and λ using (6.52).

Condition (6.57) is typically omitted as it does not impede convergence of the
algorithm in practice and this helps to reduce the computational load [44,75,102].
A stepsize tk ∈ (0,1) that satisfies condition (6.56) can be found using backtracking
line search as follows [75].

Algorithm 6.6.4 (Backtracking line search). Choose σ1 ∈R(0,1) and ς ∈R(0,1).
Set tk := 1;
repeat until φ(tk ,ρk )−φ(0,ρk ) ≤σ1tkφ

′(0,ρk )
tk := ςtk ;
end (repeat)

Compared to the strategy presented in [32], there is a slight modification. In [32],
the penalty parameter ρk is determined by the following condition

φ′(0,ρk ) ≤−1

2
Δx�

k BkΔxk . (6.58)

This condition aims to guarantee that φ′(0,ρk ) is negative, which implies that
[
Δxk

Δλk

]
is the descent direction of φ(t ,ρk ) at (0,ρk ) and hence there exists a stepsize tk ∈R(0,1)

such that condition (6.56) is satisfied. However, in contrast to [32] in which Bk is
assumed to be positive definite, we only assume positive (semi-) definiteness of Bk in
Assumption 6.3.1. Consequently, the condition needs to be modified. We therefore
employ condition (6.55), which guarantees that φ′(0,ρk ) is negative, for determining
the penalty parameter ρk . In the following lemma we will prove the existence of a
non-negative penalty parameter such that condition (6.55) holds.

Lemma 6.6.5. For any iteration k, there exists ρ̂k ≥ 0 such that

φ′(0,ρ) ≤−γΔx�
k Δxk ,

for all ρ ≥ ρ̂k .
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Proof. The gradient of the merit function with respect to x and λ is given by

∇Laug(x,λ) =
[∇ f (x)+∇g (x)λ+ρ∇g (x)g (x)

g (x)

]
. (6.59)

It follows that φ′(0,ρ) at an iteration k is given by

φ′(0,ρ) =∇Laug(xk ,λk )�
[
Δxk

Δλk

]
=∇ f (xk )�Δxk +Δx�

k ∇g (xk )λk +ρg (xk )�∇g (xk )�Δxk + g (xk )�Δλk

=∇ f (xk )�Δxk − g (xk )�λk −ρg (xk )�g (xk )+ g (xk )�Δλk . (6.60)

Note that in the last equality we use the following relation which follows from (6.14)

g (xk ) =−∇g (xk )�Δxk . (6.61)

Let us calculate the first term on the right hand side of (6.60). It follows from (6.7a)
that

∇ f (xk ) =−BkΔxQP
k −∇g (xk )λk+1. (6.62)

From (6.10) and (6.12) we obtain

ΔxQP
k = 1

α
Δxk −

1−α

α
Δxf

k

= 1

α
Δxk +

1−α

α
∇g (xk )†g (xk )

= 1

α
Δxk −

1−α

α
∇g (xk )†∇g (xk )Δxk , (6.63)

where the last equality follows from (6.61). Substituting (6.63) into (6.62) yields

∇ f (xk ) =− 1

α
BkΔxk +

1−α

α
Bk∇g (xk )†∇g (xk )Δxk −∇g (xk )λk+1. (6.64)

It follows that

∇ f (xk )�Δxk =− 1

α
Δx�

k BkΔxk +
1−α

α
Δx�

k Bk∇g (xk )†∇g (xk )Δxk

−Δx�
k ∇g (xk )λk+1

=− 1

α
Δx�

k BkΔxk +
1−α

α
Δx�

k Bk∇g (xk )†∇g (xk )Δxk

+ g (xk )λk+1. (6.65)

Substituting (6.65) into (6.60) results in

φ′(0,ρ) =− 1

α
Δx�

k BkΔxk +
1−α

α
Δx�

k Bk∇g (xk )†∇g (xk )Δxk

+2g (xk )�Δλk −ρg (xk )�g (xk ). (6.66)
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Condition (6.55) is therefore equivalent to

−1

2
Δx�

k VkΔxk +2g (xk )�Δλk ≤ ρg (xk )�g (xk ), (6.67)

where

Vk = Bk

(
1

α
In − 1−α

α
∇g (xk )†∇g (xk )�

)
−γIn . (6.68)

Due to Assumption 6.6.1 and Assumption 6.6.2, it can be verified that the left hand
side of (6.67) is bounded. It is obvious that the lower bound ρ̂k can be taken as zero
if

−1

2
Δx�

k VkΔxk +2g (xk )�Δλk ≤ 0. (6.69)

When (6.69) does not hold, the following value of ρ̂k guarantees that (6.67) holds
for all ρ ≥ ρ̂k

ρ̂k =
∥∥− 1

2Δx�
k VkΔxk +2g (xk )�

∥∥∥∥g (xk )�g (xk )
∥∥ . (6.70)

In conclusion, ρ̂k can be taken as in (6.70) if (6.69) does not hold, and as zero
otherwise.

Similar to [32], the strategy for determining ρ is to retain the value at the pre-
vious iteration, and only increase if necessary to satisfy (6.55). The initial value ρ0

is chosen equal to zero. At an iteration k, the penalty parameter ρk is defined as
follows

ρk :=
{

ρk−1 if φ′(0,ρk−1) ≤− 1
2Δx�

k VkΔxk ,
max

(
ρ̂k ,2ρk−1

)
otherwise,

(6.71)

where ρ̂k is defined as described in the proof of Lemma 6.6.5

ρ̂k :=
⎧⎨
⎩

∥∥∥− 1
2 Δx�

k VkΔxk+2g (xk )�
∥∥∥

‖g (xk )�g (xk )‖ if (6.69) does not hold,

0 otherwise.
(6.72)

Due to this strategy for determining ρ, there are two possible cases, namely the
bounded case and the unbounded case. In the bounded case, the value of ρ eventu-
ally becomes fixed at a certain value, while in the unbounded case, ρ will be tending
to infinity. The next lemma is crucial for the proof of convergence in the unbounded
case. The proof of the lemma can be found in [32].

Lemma 6.6.6. [32, Lemma 4.6] Let kl , l = 0,1, . . . , denote the indices of the sub-
sequence of iterations when the penalty parameter increases. There exists a bounded
constant M such that, for all l ∈N,

ρkl

kl+1−1∑
k=kl

‖tkΔxk‖2 < M . (6.73)
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The next lemma proves the existence of a lower bound on the stepsize defined
by the line search in Step 3 of Algorithm 6.6.3.

Lemma 6.6.7. [32, Lemma 4.9] The line search in Step 3 of Algorithm 6.6.3 defines
a stepsize tk such that

φ(tk ,ρk )−φ(0,ρk ) ≤σ1tkφ
′(0,ρk )

and tk ≥ t̄ , where 0 <σ1 < 1, and t̄ is bounded away from zero and independent of k.

We are now ready to prove the global convergence property of Algorithm 6.6.3.
The proof is similar to [32, Theorem 4.1].

Theorem 6.6.8. Under Assumptions 6.3.1, 6.3.2, 6.3.3, 6.6.1 and 6.6.2, Algorithm
6.6.3 has the property that

lim
k→∞

‖Δxk‖ = 0. (6.74)

Proof. If ‖Δxk‖ = 0 for any finite k, the algorithm terminates and the theorem is true.
Therefore, we assume that ‖Δxk‖ �= 0 for any finite k.

Let us first consider the unbounded case when there is no upper bound on the
penalty parameter ρ. While ρ tends to infinity, since there is a lower bound on tk

as stated in Lemma 6.6.7, the relation (6.73) implies that for any δ> 0, there exists
an iteration number k̄ ∈N such that ‖Δxk‖ ≤ δ for all k ≥ k̄. This implies that (6.74)
holds.

In the bounded case, there exists a value ρ̃ and an index k̃ such that ρk = ρ̃ for
all k ≥ k̃. The proof is by contradiction. We assume that ‖Δxk‖ does not tend to zero
as k →∞. This implies that there exists ε> 0 and an index k̊ ≥ k̃ such that ‖Δxk‖ ≥ ε

for all k ≥ k̊. Due to (6.55), (6.56) and Lemma 6.6.7, we therefore have

φ(tk )−φ(0) ≤σ1tkφ
′(0) ≤−1

2
ρ t̄γε2 < 0. (6.75)

Therefore, every subsequent iteration must yield a strict decrease in the merit func-
tion. This implies that the merit function with ρ = ρ̃ must be unbounded below. This
leads to a contradiction, due to Assumption 6.6.1 and Assumption 6.6.2. Therefore,
(6.74) must hold.

In summary, to guarantee global convergence, we employ the strategy from [32]
with a slight modification in the determination of the penalty parameter of the merit
function, in order to account for the positive (semi-) definiteness of the Hessian
approximation.

6.7 Treatment of inequality constraints

The basic SQP method can be extended to solve the general nonlinear program-
ming problem 6.2.1 which contains inequality constraints. The two main approaches
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to handle inequality constraints are inequality-constrained QP (IQP) and equality-
constrained QP (EQP) [37,75].

In the IQP approach, the inequality constraints are also linearized, resulting in
the following QP subproblem

min
Δxk∈Rn

1

2
Δx�

k BkΔxk +∇ f (xk )�Δxk

s.t. ∇g (xk )�Δxk + g (xk ) = 0,

∇h(xk )�Δxk +h(xk ) ≤ 0.

(6.76)

The QP subproblem (6.76) can be solved by using methods for solving QP such as
interior-point method or active-set method. The set of active inequality constraints
of the QP subproblem is the estimate of the active set of the nonlinear program
problem at the solution. If the optimal active set is identified correctly in a finite
number of iterations then the algorithm converges rapidly. On the other hand, the
IQP approach can be computationally expensive due to the cost of solving inequality
constrained QP subproblems.

In the EQP approach, a subset of inequality constraints is selected at each itera-
tion to form the working set Wk . The inequality constraints in the working set are
treated as equality constraints while the other inequality constraints are ignored.
The resulting QP subproblem which contains only equality constraints is given by

min
Δxk∈Rn

1

2
Δx�

k BkΔxk +∇ f (xk )�Δxk

s.t. ∇g (xk )�Δxk + g (xk ) = 0,

∇h[i ](xk )�Δxk +h[i ](xk ) = 0, i ∈Wk .

(6.77)

The solution of this equality constrained QP can be obtained by solving a system
of linear equations similar to (6.8). The working set is updated at every iteration
by adding and deleting constraints based on Lagrange multiplier estimates, or by
solving an auxiliary subproblem [75]. The advantage of the EQP approach is that
the cost to solve an equality constrained QP subproblem is less expensive than the
cost to solve an inequality constrained QP subproblem, especially when considering
large-scale problems.

The EQP approach will be employed for solving the NMPC of linear motor prob-
lem in the next section.

6.8 Numerical examples

In this section, we present two numerical examples to verify the performance of the
new optimization algorithm. The first one is a simple constrained nonlinear least
squares problem. The second one is the NMPC problem of linear motors which is
described earlier in Chapter 5.
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6.8.1 A constrained nonlinear least squares problem

Let us consider the following nonlinear optimization problem

Problem 6.8.1.

min
x∈R5

(x1 −1)2 + (x1 −x2)2 + (x3 −1)2 + (x4 −1)4 + (x5 −1)6

s.t. x2
1 x4 + sin(x4 −x5)−6

�
2 = 0,

x2 +x4
3 x2

4 −8−
�

2 = 0.

The initial estimate is x0 = [2,2,2,2,2]� and λ0 = [0,0]�. This is a nonlinear equality
constrained least squares problem with nonzero residual. In nonlinear constrained
least squares problems, the cost function has the least squares form

f (x) = 1

2
‖R(x)‖2,

where R : Rn →Rp . A popular Hessian approximation for this type of problems is the
GGN approximation [13,14,22]

B GGN(x) =∇R(x)�∇R(x).

It is well known that the SQP method with GGN Hessian approximation, also known
as the GGN method, converges locally if the residual function R(x) is small at the
solution [21].

In this example, we test the exact Hessian SQP method (SQP-EH), the GGN
method (SQP-GGN), the new interpolated method with GGN Hessian approximation
(iSQP-GGN), and the new interpolated method with identity Hessian approximation
Bk = In (iSQP-I). The optimization algorithms are programmed in Matlab and tested
on a 3.6 GHz computer. The measure of convergence is the 2-norm of the KKT
matrix ∇L (xk ,λk ), which is called the KKT residual. The optimization algorithms
terminate when the KKT residual is less than 10−6.

The test results are as follows. The SQP-EH method converges quadratically as
expected. The SQP-GGN method does not converge. The iSQP-GGN method con-
verges linearly. This demonstrates that the proposed interpolation scheme can en-
force convergence for the SQP method with GGN Hessian approximation. The iSQP-I
method also converges linearly, but at a slower rate. This is expected since the GGN
approximation is a better approximation than the identity matrix. The convergence
rate of the methods are shown in Figure 6.1. The interpolation coefficients α shown
here are among the ones that result in fastest convergence rates for each method.
The SQP-EH method, the proposed iSQP-GGN and iSQP-I methods converge to the
same solution x∗ = [2.0874,2.0980,1.2487,1.7347,0.5492]�.

The number of iterations and computation time are summarized in Table 6.1. It
is observed that the SQP-EH method requires the least number of iterations, as it
converges quadratically. The iSQP method needs a higher number of iterations, but
the total computation time is lower, since it requires less computation per iteration.
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Figure 6.1: Convergence rate illustration.

Table 6.1: Computation time

Method Number of Computation
iterations time [ms]

SQP-EH 13 19.2
iSQP-GGN, α= 0.65 16 17.2
iSQP-GGN, α= 0.70 18 17.5
iSQP-I, α= 0.45 24 16.7
iSQP-I, α= 0.50 34 17.4

This demonstrates that with a suitable choice of the interpolation coefficient α, the
new method can be more efficient than the SQP-EH method, especially in large-scale
cases when computation of the exact Hessian can be very expensive.

The above initial estimate is close to the solution. In order to test the global con-
vergence strategy described in Section 6.6, we select a further away initial estimate,
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Figure 6.2: Stepsize and KKT residual of the iSQP-I method with α= 0.25.

which is x0 = [−2,−2,−2,−2,−2]� and λ0 = [0,0]�. The parameters for the global con-
vergence algorithm are σ1 = 0.1, ς= 0.5 and γ= 0.0001. With the new initial estimate,
the iSQP-I method does not converge if we disable the global convergence strategy
and keep the stepsize equal to 1. When the global convergence strategy is enabled
then the method converges. The values of the stepsize and the KKT residual of the
iSQP-I method with α= 0.25 are shown in Figure 6.2. It can be seen that the stepsize
is generally smaller than 1 when the estimate is far from the solution, and recover
to 1 when the estimate comes close to the solution.

6.8.2 Nonlinear model predictive control of linear motors

In this example we apply the new optimization algorithm to the NMPC problem
of linear motors. As described in Chapter 5, the NMPC problem is formulated as
follows
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Problem 6.8.2 (NMPC).

min
x1,...,xN ,

u0,u1,...,uN−1

(
xN −x∗N

)� P
(
xN −x∗N

)+N−1∑
i=0

(
xi −x∗i

)�Q
(
xi −x∗i

)

+
N−1∑
i=0

(
ui −ur

i

)� (
ui −ur

i

)
subject to

xi+1 = Axi +BΨx (xi ,ui ), ∀i = 0, . . . , N −1,

Ψz (xi ,ui ) = 0, ∀i = 0, . . . , N −1,

Ψy (xi ,ui ) = 0, ∀i = 0, . . . , N −1,

w x
min ≤ w x

i ≤ w x
max, ∀i = 0, . . . , N −1,

umin ≤ ui ≤ umax, ∀i = 0, . . . , N −1.

In this example we use the same linear motor model as described in Section 5.4.
The linear motor consists of 2 coil sets, which gives us 4 independent inputs. The
mass of the translator is m = 20 kg. The driving force limit is ±3000 N. The cur-
rent limit is ±25 A. The sampling rate of the control loop is 1 kHz. The weighting
matrix is Q = diag(108,1). The terminal cost P is calculated as the solution of the
discrete-time Lyapunov equation of the linear dynamics. The step reference is used.
The prediction horizon is N = 8. Consequently, Problem 6.8.2 has 48 optimization
variables, 32 equality constraints and 80 inequality constraints. The solution of the
MPC problem at a time sample is used as the "warm-start" initial point for the MPC
problem next time sample. We employ an active set strategy to handle inequality
constraints. The simulation is performed in Matlab on a 3.6 GHz computer.

Similar to the previous example, we test the SQP-EH, SQP-GGN and iSQP-I. In
addition, we also test the commercial solvers Knitro and IPOPT for comparison [16,
109]. The NMPC simulation results are the same for all the tested methods. The
results are shown in Figure 6.3. As discussed in Chapter 5, the NMPC controller is
able to compensate for parasitic forces and torques while guaranteeing constraint
satisfaction.

Table 6.2 summarizes the computation time of each method. It is observed that
the SQP-GGN algorithm converges without the developed interpolation scheme and
it is the fastest one. The SQP-EH method needs the highest computation time. Our
iSQP-I algorithm is faster than the solver Knitro and is slightly slower than the solver
IPOPT. It should be noted that our algorithm is programmed in Matlab code, which
is generally slower than C code. By converting Matlab code to C code, the algorithm
is expected to run faster and thereby achieving lower computation time.

6.9 Conclusions

In this chapter we have developed a new computationally efficient optimization
method for solving nonlinear programming problems. The new method is a variant
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Figure 6.3: NMPC simulation results.

of SQP in which an arbitrary positive (semi-) definite Hessian approximation can
be used. In this method, the search direction is taken as the interpolation between
the search direction provided by solving the QP subproblem and a feasible search
direction. It is proved that the algorithm converges locally at linear rate to a local
optimum of the nonlinear programming problem. Furthermore, a strategy for global
convergence is employed to guarantee convergence from any initial estimate. The
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Table 6.2: NMPC computation times

Method Average Best Worst
time [ms] [ms] [ms]

SQP-EH 2118 985 54176
SQP-GGN 90 38 230
iSQP-I, α= 0.6 99 63 241
Knitro 125 50 377
IPOPT 97 70 148

effectiveness of the method has been illustrated in two numerical examples. The
method will be used to solve the optimal commutation problem in an experimental
linear motor setup in the next chapter.

The new algorithm is implemented in Matlab code, which is generally slower
than C code. By converting to C code, the computation time is expected to reduce
significantly. We will implement this in future work. Furthermore, it is of interest to
exploit the sparsity of the NMPC of linear motor problem to write a dedicated fast
solver based on the algorithm developed in this chapter. Another interesting topic
for future work is how to compute the interpolation coefficient such that the fastest
speed of convergence is achieved.



Chapter 7
Experimental validation

7.1 Introduction

The modeling and control methods developed in the previous chapters have been
demonstrated to deliver good performance in simulation. Now it is of our interest
to validate the methods in a real CLM. We have designed and constructed an exper-
imental CLM setup for this purpose. The setup consists of a real industrial linear
motor, power amplifiers and encoder provided by ASML. Additional force sensors
are added in order to measure the forces and torques produced by the motor in
driving and non-driving directions. The setup is controlled by a dSPACE MicroLab-
Box development system. Details of the design and construction of the experimental
setup will be presented in this chapter.

The data-driven modeling method and the optimal commutation method are
validated on the experimental setup. First, the measurement data collected from
the experimental setup is used to identify a model of the linear motor using the
data-driven modeling method presented in Chapter 3. The optimal commutation
method presented in Chapter 4 is then validated on the setup. The experimental
results will be presented and analyzed.

This chapter is organized as follows. The design and specifications of the setup
are presented in Section 7.2. Section 7.3 describes the identification experiments
and presents the identification results. Section 7.4 presents the results of the com-
mutation experiments. The conclusions are summarized in Section 7.5.

7.2 Experimental setup

7.2.1 System overview

The overview of the experimental setup is depicted in Figure 7.1. The linear mo-
tor contains three coil sets. Each set consists of three coils connected in star-
configuration and is powered by a three-phase power amplifiers. The control soft-
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ware is programmed on a dSPACE MicroLabBox development system. At every sam-
pling time instance, the dSPACE MicroLabBox reads the measurement signals from
the encoder, the power amplifiers and the force sensors, and then implements the
control and commutation algorithms to calculate current setpoints and send them to
the power amplifiers. The dSPACE MicroLabBox communicates with the power am-
plifiers through serial communication. The real-time applications can be accessed
during run-time on a computer using the dSPACE ControlDesk software. A picture
of the complete setup is shown in Figure 7.2.

Figure 7.1: Overview of the experimental setup.

Figure 7.2: The experimental setup.
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7.2.2 Mechanical design

The mechanical design of the setup is shown in Figure 7.3. The coil array is placed
in the air gap between the two magnet arrays and is guided by a mechanical bear-
ing. The force sensor in the x-direction is placed in between the coil array and the
bearing. Two other force sensors are added to measure the force in the z-direction.
An additional mass up to 50 kg can be connected to the coil via a rope and pulley
system to generate a load force. The gravity is in the y-direction. Pictures of the real
linear motor setup construction are shown in Figure 7.4.

Figure 7.3: Mechanical design of the experimental setup.

In order to study the parasitic effects in the non-driving directions, the following
functionalities are made available in our experimental setup:

• The z-position of the coil array can be adjusted. This functionality enables us
to shift the coil array out of the center of the air gap, in order to study the
effect of the misalignment of the coil in the z-direction. In this chapter, we
perform experiments with the coil array shifted 0.7 mm out of the center of
the air gap.

• Force sensors are added in the driving and non-driving directions. These force
sensors are necessary to identify the model of the motor, especially in the non-
driving directions, and to verify whether the developed commutation method
helps to compensate for the parasitic forces and torques generated by the mo-
tor.

• A load force can be added by connecting masses to the coil array via a rope
and pulley system. The added load force allows the linear motor to constantly
generate high force without resulting in high acceleration and high speed,
which is not safe for the limited stroke length of 0.4 m. As a result, we are
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(a) Front view.

(b) Side view.

Figure 7.4: The linear motor setup construction.

able to perform experiments with high force and high current at low speed in
which the parasitic effects are amplified. This allows us to easily observe the
advantage of the new optimal commutation method compared to the classical
commutation method.
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It is noted that the mechanical bearing introduces parasitic effects which are
larger than the parasitic effects caused by manufacturing tolerances discussed in
Chapter 2. This causes difficulty for identification of the linear motor model in the
driving direction. To deal with this problem, we have placed a force sensor in be-
tween the coil array and the bearing as illustrated in Figure 7.3. With this sensor we
can measure any force created by the bearing like friction and inertial forces. The
friction is therefore known and can be taken into account in the identification proce-
dure. Furthermore, the 50 kg mass allows us to perform experiments with high force
and high current at low speed. As the effects of the bearing on the dynamics is less
significant at low speed, we are able to effectively apply the identification and com-
mutation methods developed in the previous chapters. In the non-driving direction,
the effect of the bearing is small. The developed identification and commutation
methods can therefore be applied.

7.2.3 Hardware

In this section we present the specifications of the main components in the setup.

Linear motor

The setup consists of a real industrial coreless linear motor provided by ASML. The
motor consists of three coil sets of three coils each. The length of the stroke is 0.4 m.
The motor can reach a peak force of 5025 N. The design parameters of the motor,
which are provided by the manufacturer, are summarized in Table 7.1.

Table 7.1: Parameters of the experimental linear motor.

Parameter Symbol Value Unit
Motor force constant k 201 N/A
Magnet pole pitch τp 39 mm
Coil pitch τc 52 mm
Air gap δ 3.45 mm
Magnet width wm 36 mm
Magnet height hm 13.6 mm
Coil width wc 52 mm
Coil height hc 9 mm
Coil bundle width wb 22 mm
Remanent magnetization Brem 1.35 T
Magnet relative permeability μr 1.033
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Power amplifiers

The setup consists of three identical three-phase current amplifiers also provided by
ASML. The amplifier provides a three-phase output current according to the current
setpoints it receives from the controller, and sends back the current measurements
to the controller. The phase current range is ±25 A peak. The phase-to-phase voltage
range is ±550 V.

Encoder

For position measurement, we use an incremental linear encoder Numerik Jena
LIA20 together with a SINGLEFLEX scale tape. The smallest measuring step is 1 μm.

Force sensors

For force measurement, we use three force sensors from HBM. One sensor HBM
U9C/2kN is used to measure the force in the driving direction. Two sensors HBM
U9C/100N are used to measure the force in the z-direction and the torque around
the y-direction. The sensors have the accuracy of 0.2%. The measured signals are
amplified by a signal amplifier HBM PX455 before being sent to the controller.

dSPACE MicroLabBox

The control software is implemented on a dSPACE MicroLabBox development sys-
tem. The MicroLabBox consists of a 2 GHz dual-core real-time processor and a
user-programmable FPGA. It has 1 GB DRAM 128 MB flash memory. The control
algorithm is programmed on the real-time processor. The MicroLabBox communi-
cates with the power amplifiers through bidirectional differential digital I/O chan-
nels using a serial communication protocol. The serial communication protocol is
programmed on the FPGA. The position measurements are received through an en-
coder sensor input. The force measurements are received through 14-bit analog
input channels, with voltage range of ±10 V.

7.2.4 Software

The control software is implemented in Matlab/Simulink. Simulink Coder gener-
ates C code from the Simulink block diagrams which can be downloaded to the
MicroLabBox. The dSPACE Real-Time Interface (RTI) sets up connections between
the Simulink model and MicroLabBox Input/Ouput (I/O). The dSPACE ControlDesk
serves as an user interface which gives us access to the real-time applications during
run-time.
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7.3 Data-driven modeling experiments

7.3.1 Friction identification

The experimental setup has a force sensor placed in between the bearing and the
translator of the motor as shown in Figure 7.3. The force measured by this force
sensor is given by

F x
measured = mbearinga +Ffriction. (7.1)

where mbearing is the mass of the bearing and a is the acceleration. Therefore, we
can measure the friction by letting the motor move at a constant velocity, i.e. a = 0.
We approximate the friction by the following model

Ffriction = FCoulomb(x)+Fviscous(v). (7.2)

The position-dependent Coulomb friction is approximated by a Fourier series

FCoulomb(x) =
N∑

i=1

(
fi cos

(
2π

L
x

)
+ gi sin

(
2π

L
x

))
+h, (7.3)

where L is the length of the stroke, fi , gi and h are the Fourier coefficients. The
viscous friction is linear with the velocity v

Fviscous(v) = kv v, (7.4)

where kv is the viscous friction coefficient.
We perform experiments in which the motor moves from one end to the other

at a constant velocity. Several experiments with different values of the velocity are
performed and the force sensor measurement data are collected. The parameters
of the friction model are obtained by fitting the model to the measurement data.
The identified Coulomb friction and viscous friction are plotted in Figure 7.5. The
identified viscous friction coefficient kv is 28.26 Ns/m.

7.3.2 Identification in the driving direction

Simultaneous identification of the static nonlinearity and the linear dynamical
system

We first test the data-driven modeling method for the driving direction introduced
in Section 3.2. The method aims to identify the model of the static nonlinearity and
the linear dynamics simultaneously from the currents and position measurements.

The model structure of the linear motor in the driving direction is depicted in
Figure 7.6. The linear dynamics part is modeled as a second-order discrete-time
transfer function

G(q) = b1q−1 +b2q−2

1+a1q−1 +a2q−2 . (7.5)
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Figure 7.5: Identified Coulomb friction and viscous friction.

Figure 7.6: Model structure of the linear motor in the driving direction.

In order to keep the number of parameters low, only one coil set is used in the
experiments. Therefore, the number of independent inputs is 2 due to the star
connection. In the driving direction there is only Lorentz force which is linear with
the currents. The driving force is given by

F x = [
K x

1 (x) K x
2 (x)

][u1

u2

]
, (7.6)

where K x
l (x), l = 1,2, are the position-dependent force functions. Only one harmonic

component with frequency π
τp

is used in the Fourier model of the static nonlinearity.
The force functions are modeled as

K x
l (x) = cl cos

(
π

τp
x

)
+dl sin

(
π

τp
x

)
, l = 1,2. (7.7)

The total input force acting on the linear dynamics is given by

wx = F x −Fload −FCoulomb, (7.8)

where the load force comes from the mass attached to the motor. It should be noted
that the viscous friction is modeled as a damper in the linear dynamics part and
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therefore is not taken into account here. In addition, since the position-dependent
part of the Coulomb friction is very small compared to the load force, we neglect
the position dependency and assume that the Coulomb friction is constant along the
stroke. The predictor model is given by

x̂NARX(t ,θ) = −
2∑

j=1
a j xm(t − j )+

2∑
k=1

bk wx (t −k)

= −
2∑

j=1
a j xm(t − j )+ f

+
2∑

k=1
bk

2∑
l=1

cl cos(ωn xm(t −k))ul (t −k)

+
2∑

k=1
bk

2∑
l=1

dl sin(ωn xm(t −k))ul (t −k)

=ϕ�
NARX(t )θ, (7.9)

where

f =−
2∑

k=1
bk (Fload +FCoulomb) , (7.10)

and θ is the parameter vector

θ = [a1 a2 f b1c1 b1d1 b1c2 b1d2 b2c1 b2d1 b2c2 b2d2]�.

The identification experiments are performed as follows. The motor operates
in closed position loop as depicted in Figure 3.3 (see page 40). A load of 50 kg is
attached to the motor. To avoid the nonlinear behavior of the friction around zero
velocity, we let the motor move in only one direction and keep the velocity positive.
The motor moves from one end to the other with changing velocity. The changing
velocity requires the motor force to keep changing, thereby generating excitation
to the linear dynamics part. The input currents are calculated using the classical
commutation. Then multi-sine excitation input currents are added

u = uclassical +uexcitation (7.11)

The excitation inputs are calculated as follows. Assume that we have nu indepen-
dent inputs. Then nu −1 inputs are excited. The last input is calculated such that the
force produced by the motor is equal to the reference force F x

ref given by the position
controller. The measurements of the input currents and the output position are col-
lected. The sampling frequency is 1 kHz. The data-driven modeling method for the
driving direction introduced in Section 3.2 is then applied to identify the parameters
of the linear motor model. The identified position-dependent force functions K x

l (x)
are plotted in Figure 7.7. The nominal force functions given by the motor specifi-
cations are also plotted for comparison. It can be seen that estimation of the force
functions is very poor.
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Figure 7.7: The nominal and identified force functions in the driving direction.

Figure 7.8: The forces and positions of the real motor and the identified model.

We simulate the identified model with the input currents which were supplied
to the real motor. The resulting force and position obtained from the simulation
are shown in Figure 7.8. It is observed that the estimate of the force is very poor.
However, the estimate of the output position is still decent. This suggests that al-
though the parameters vary considerably, they vary together such that the effect on
the output is small. In other words, the correlation between the parameters is high.
Let us check the correlation matrices between some parameters

R[a1,b1c1] =
[

1 0.52
0.52 1

]
, R[a1,b1c2] =

[
1 0.78

0.78 1

]
,
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R[a1,b1c3] =
[

1 0.78
0.78 1

]
, R[a1,b1c4] =

[
1 0.78

0.78 1

]
.

This verifies that indeed there is a high correlation between parameters and the
parameters vary considerably together. As discussed in Section 3.2.5, due to the
huge difference in the range of a compared to the range of bc and bd , a small
relative variation in the estimate of a can cause a huge relative variation in the
estimates of bc and bd . This causes difficulty in separately identifying the static
nonlinearity part and the dynamics part. An alternative solution to this problem is
to identify the static nonlinearity separately as will be described in the following
subsection.

Identification of the static nonlinearity

As an alternative, we employ the data-driven modeling method for the static non-
linearity only which is developed in Section 3.3 to identify the model of the static
nonlinearity in the driving direction. This method requires measurement data of the
input currents and the force produced by the motor. This is possible thanks to the
force sensor in the driving direction.

The identification experiments are performed as follows. The motor operates
in closed position loop. The motor moves from one end to the other by follow-
ing a third-order reference motion profile. The input excitation is implemented as
described in the previous subsection. During the constant velocity phase, the cur-
rent measurements and force measurements are collected. We note that the force
produced by the motor is equal to

F x = mtotala +Ffriction +Fload, (7.12)

where mtotal is the sum of the masses of the bearing, the translator and the load.
The force measured by the force sensor in the driving direction is given by (7.1).
Consequently, when a = 0 we have that

F x = F x
measured +Fload, (7.13)

Therefore, in the constant velocity phase, the force produced by the motor is calcu-
lated as the sum of the force measured by the force sensor and the constant load
force.

All 3 coil sets are used in the experiments. Since each coil set has only 2 inde-
pendent inputs due to the star connection, we have in total 6 independent inputs.
The driving force is given by

F x = [
K x

1 (x) K x
2 (x) . . . K x

6 (x)
]
⎡
⎢⎢⎢⎢⎣

u1

u2
...

u6

⎤
⎥⎥⎥⎥⎦ , (7.14)
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where K x
l (x), l = 1,2, . . . ,6, are the position-dependent force functions. As described

in Section 3.3, the following predictor is used for identification

F̂ x
NARX(t ,θ) =

6∑
l=1

nF∑
n=1

cl ,n cos(ωn xm(t ))ul (t )+
6∑

l=1

nF∑
n=1

dl ,n sin(ωn xm(t ))ul (t ). (7.15)

Here, the experiment range is [−2τp ,2τp ]. We choose this experiment range as the
base Fourier period. The 1st, 2nd, 4th, 6th and 10th harmonic components are
included in the predictor model.

We perform experiments with different load forces and collect the measurement
data. As analyzed in Chapter 3, since our x-position measurement noise is much
smaller compared to the magnet pole pitch τp , we can safely use the IV method
developed in Section 3.3 without bias correction. The identified position-dependent
force functions K x

l (x) are plotted in Figure 7.9. The nominal force functions given
by the motor specifications are also plotted for comparison. At first glance, it seems
that the identified force functions are almost the same as the nominal force func-
tions. But if we look closely, we can observe that, in contrast to the nominal force
functions, the identified force functions of the coils in different coil sets are not
exactly identical. The difference between the identified force functions and the
nominal force functions are plotted in Figure 7.10.

To validate the identified model, we give the same input currents to the nominal
model, the identified model and the real motor, and then compare their output
forces. The input currents is calculated using classical commutation as shown in
Figure 7.11. The results are plotted in Figure 7.11. It can be seen that the identified
model provides a closer match with the real motor than the nominal model does.
The root mean square (rms) value of the force error of the nominal model is 5.92 N.
The rms value of the force error of the identified model is 2.89 N, which is much
smaller than that of the nominal model.

7.3.3 Identification in the non-driving directions

To identify the model in the non-driving directions, we use the data-driven modeling
method introduced in Section 3.3. Let us recall that the coil array is shifted 0.7 mm
out of the center of the air gap. Consequently, there are both Lorentz force and
reluctance force in the non-driving directions. The force in the z-direction is given
by

F z = K z (x)u +u�Gz u. (7.16)

As described in Section 3.3, the following predictor is used for identification

F̂ z
NARX(t ,θ) =

6∑
l=1

nF∑
n=1

cl ,n cos(ωn xm(t ))ΛLor
l (u(t ))

+
6∑

l=1

nF∑
n=1

dl ,n sin(ωn xm(t ))ΛLor
l (u(t ))+

21∑
l=1

flΛ
rel
l (u(t )), (7.17)
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Figure 7.9: The nominal and identified force functions in the driving direction.

Figure 7.10: The difference between the identified and the nominal force functions in the
driving direction.

where

ΛLor
l (u) = [

u1 u2 . . . u6
]�

,

and

Λrel
l (u) = [

u2
1 u1u2 . . . u1u6 u2

2 u2u3 . . . u2
6

]�
.

Similar to the previous section, the experiment range [−2τp ,2τp ] is chosen as the
base Fourier period. The 1st, 2nd, 4th, 6th and 10th harmonic components are
included in the Fourier series in the predictor model.
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Figure 7.11: Model validation - Output forces of the nominal model, the identified model
and the real motor in the driving direction.

The identification experiments are performed in the same ways as described
in the previous section. The current measurements and force measurements are
collected. As analyzed in Chapter 3, since our x-position measurement noise is much
smaller compared to the magnet pole pitch τp , we can safely use the IV method
developed in Section 3.3 without bias correction. For illustration, the identified
Lorentz position-dependent force functions of the force in the z-direction and the
torque around the y-direction are plotted in Figure 7.12.

To validate the identified model, we supply the same input currents to the identi-
fied model and the real motor, then compare their output forces. We use the same in-
put currents calculated using classical commutation as shown in Figure 7.11, which
have also been used for model validation in the driving direction in the previous
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Figure 7.12: The identified Lorentz force functions in the non-driving directions.

Figure 7.13: Model validation - Output forces of the identified model and the real motor in
the non-driving directions.

section. The results are plotted in Figure 7.13. The Lorentz component and reluc-
tance component are also plotted. It can be seen that the outputs of the identified
model are close to the outputs of the real motor. The rms value of the z-force error is
0.21 N. The rms value of the y-torque error is 0.10 Nm. The validation results show
that the identified models are accurate.

7.4 Optimal commutation experiments

In this section we present the results of the optimal commutation experiments. The
experiments are performed as follows. The motor operates in closed position loop
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Figure 7.14: The reference motion profile.

as depicted in Figure 3.3. The bandwidth of the control loop is 10 Hz. A load of
50 kg is attached to the motor. The sampling frequency is 10 kHz.

The motor moves from one end to the other by following a third-order ref-
erence motion profile. The reference motion profile parameters are as follows:
jerk= 10000 m/s3, acceleration= 5 m/s2 and velocity= 0.01 m/s. The reference mo-
tion profile is shown in Figure 7.14. It is noted that the maximum achievable jerk is
limited by the maximum amplifier voltage and the motor inductance. For the motor
and amplifier used, a jerk of 10000 m/s3 is achievable. However, in this experiment
we are mainly interested in the performance of the commutation methods in the
constant velocity phase. It is not crucial to achieve the reference jerk and therefore
no feedforward controller is included.

We first perform the experiment with classical commutation as described in Sec-
tion 4.2. Then the optimal commutation method is implemented. The fast optimiza-
tion algorithm introduced in Section 4.3.4 and analyzed in Chapter 6 is successfully
implemented on the real-time hardware for solving the optimal commutation prob-
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Figure 7.15: Position errors of the classical and optimal commutation methods.

lem. The results are discussed below.
Figure 7.15 shows the position errors of the two commutation methods. It is ob-

served that the optimal commutation method using the models identified in Section
7.3 results in lower position error compared to the classical commutation method.
During the constant velocity phase, the rms value of the position error of the clas-
sical commutation method is 20.18 μm, while the rms value of the position error of
the optimal commutation method is 10.34 μm.

Figure 7.16 shows the comparison of the reference forces F x
ref produced by the

position controller and the output forces F x produced by the motor in the two com-
mutation methods. Since commutation is the inverse of the static nonlinearity, the
quality of a commutation method can be evaluated by looking at the error between
the reference force and the output force. The smaller the error is, the better the com-
mutation method is. A perfect commutation will result in zero force error. Here, it
is observed that in the force error of the classical commutation is much larger than
that of the optimal commutation. During the constant velocity phase, the 3-sigma
value of the force error of the classical commutation method is 7.64 N, while the
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Figure 7.16: Forces and force errors of the classical and optimal commutation methods.

3-sigma value of the force error of the optimal commutation method is 3.63 N.
Figure 7.17 shows the force in the z-direction and the torque around the y-

direction of the two commutation methods. It is observed that, using the optimal
commutation method, the z-force and the y-torque are reduced in both offset and
variation. The 3-sigma values of the z-force and y-torque during the constant veloc-
ity phase are summarized in Table 7.2.

Figure 7.18 shows the input currents of the two commutation methods. It can
be seen that current waveforms of the optimal commutation method are not pure
sine waves as those of the classical commutation.

A comparison of the two commutation methods is summarized in Table 7.2.
The experimental results prove that the optimal commutation method can improve
tracking performance in the driving direction and significantly reduce the parasitic
forces and torques in the non-driving directions.

7.5 Conclusions

This chapter has been devoted to the experimental validation of the identification
and commutation methods developed in the previous chapters. An experimental
coreless linear motor setup has been constructed in collaboration with ASML for
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Figure 7.17: Force and torque in the non-driving directions of the classical and optimal com-
mutation methods.

Figure 7.18: Input currents of the classical and optimal commutation methods.

this purpose. In this chapter we have presented the design and specifications of the
experimental setup. The setup consists of a real industrial linear motor, power am-
plifiers and an encoder. Force sensors are added to measure the forces and torques
in the driving and non-driving directions.

Identification experiments have been performed to identify the model of the
linear motor in driving and non-driving directions, using the method introduced
in Chapter 3. The IV identification method developed in Section 3.2, which aims to
identify the static nonlinearity and the linear dynamical system simultaneously, does
not provide an accurate estimate. The causes this problem are the high correlation
between the parameters and the huge difference in the values of the parameters
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Table 7.2: Comparison of the two commutation methods.

Method Position error x-force error z-force y-torque
rms [μm] 3-sigma [N] 3-sigma [N] 3-sigma [Nm]

Classical 20.18 7.64 1.62 2.06
Optimal 10.34 3.63 1.00 0.22

in the parameter vector. How to address this problem requires further research on
experiment design.

As an alternative, we employ the IV identification method developed in Sec-
tion 3.3, which identifies only the static nonlinearity, to estimate the model param-
eters in both driving and non-driving directions. The method successfully delivers
accurate estimates.

The optimal commutation method using fast optimization algorithm introduced
in Chapter 4 is then implemented successfully on the setup with a fast sampling
frequency of 10 kHz. The experimental results show that, compared to the classi-
cal commutation method, the optimal commutation method reduces the position
error in the driving direction by more accurately generating the control force. Fur-
thermore, the force and torque in the non-driving directions are also reduced. The
results prove that the optimal commutation method is able to reduce the parasitic
forces and torques in driving and non-driving directions.



Chapter 8
Conclusions and
recommendations

8.1 Conclusions

This thesis has been motivated by the future requirements of industrial positioning
systems. Future generations of industrial positioning systems are facing increasing
demands in precision and throughput. As a result, coreless linear motors are re-
quired to operate at higher acceleration and higher accuracy. One of the main chal-
lenges in meeting these requirements is the presence of parasitic effects, which lower
the performance of a coreless linear motor and create disturbances to surrounding
sensitive components. To address this problem, the main research objective of the
thesis has been formulated as: "To identify and compensate for main parasitic effects
in coreless linear motors in multiple degrees of freedom". In this thesis, the main
research objective has been addressed step-by-step by investigating the six research
questions formulated in Chapter 1. In the following, we summarize the results of
our investigation.

Q1. How to represent the main parasitic forces in a CLM mathematically in
closed form expressions?

Research question Q1 has been addressed in Chapter 2. As analyzed in Chapter 2,
there are three main types of forces in a CLM: Lorentz force, reluctance force and
drag force. The derivation of first-principle models of these main parasitic forces has
been presented using the available Fourier modeling technique, under the assump-
tion that the exact physical parameters of the CLM are known. The resulting models
have been validated by comparing their outputs to the outputs of FEM models. The
results are closely matched.

The resulting models are analytical which require low computational load and
therefore are well-suited to controller design purposes. Furthermore, based on the
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resulting first-principle models, model structures of the main parasitic forces have
been derived, which are then utilized to develop a data-driven modeling method for
CLMs in Chapter 3.

Q2. How to identify the parameters of the physical model structure of a CLM
from measurement data?

Research question Q2 has been investigated in Chapter 3. There are two main chal-
lenges in this identification problem. Firstly, the CLM must always operate in closed-
loop for safety reason. Consequently, the input is correlated with the measurement
noise, causing the simple LS estimate to be biased. The second challenge is the non-
linear dependency of the CLM model on the unknown noise-free position output,
which makes it difficult to find an appropriate predictor for identification.

In Chapter 3, we employ the IV identification framework for closed-loop identifi-
cation. We have proved that using the IV identification framework together with the
simple NARX predictor, the resulting estimate is biased. However, the bias has been
shown to be negligible if the position measurement noise is small compared to the
magnet pole pitch. When this does not hold, we have developed a bias-corrected
IV method which has been proved to deliver a consistent estimate. This method
requires knowledge of the probability distribution of the measurement noise.

Q3. How to derive an advanced commutation technique which can compen-
sate for the main parasitic effects in a CLM based on its data-driven model?

Research question Q3 has been investigated in Chapter 4. The commutation prob-
lem is formulated as finding the inverse of the static nonlinear model obtained by
the data-driven modeling technique introduced in Chapter 3. Since the data-driven
model has captured the main parasitic effects in a linear motor, the parasitic effects
can be compensated if we can find the exact inverse of the model. When a CLM
is over-actuated, i.e. there are more degrees of freedom than needed, there is an
infinite number of solutions to the inverse problem. We can use the extra degrees
of freedom to minimize the power losses in the coils. The commutation problem
therefore becomes a quadratic optimization problem with nonlinear equality con-
straints. Solving this type of optimization problems generally requires numerical
optimization algorithms, which are usually computationally expensive.

To address this problem, in Chapter 4 we have presented computationally effi-
cient methods for solving the optimal commutation problem. A look-up table is a
simple but efficient method, but on the other hand requires a large amount of mem-
ory and is not suitable for applications which requires control in multiple DOFs,
since a multi-dimension table is required. As an alternative, sub-optimal analytical
solutions have been introduced for cases when the number of coils in the translator
is low. Furthermore, we have also developed a new optimization algorithm which
is more computationally efficient than the classical Newton’s method. The effective-
ness of the proposed commutation methods has been validated in simulation with a
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FEM model and in experiments with a real CLM setup.

Q4. How to design a single nonlinear controller for a CLM instead of using a
separate linear position controller and commutation?

Research question Q4 has been addressed in Chapter 5. In this chapter, we have
investigated the use of MPC in designing a nonlinear controller for linear motors.
We have chosen MPC due to its ability to deliver high performance while guaran-
teeing constraint satisfaction. Two nonlinear controller schemes using MPC have
been introduced: the Combined LMPC+OC scheme and the NMPC scheme. The
Combined LMPC+OC scheme literally combines the LMPC problem and OC prob-
lem into a single optimization problem. It requires less computational effort than
solving the LMPC problem and OC problem separately. However, it does not predict
and minimize the future error caused by the static nonlinearity. The NMPC scheme
includes the full nonlinear model for prediction and therefore may deliver better per-
formance, at the price of higher computational effort, especially for high prediction
horizon. Both of the introduced MPC schemes are able to compensate for parasitic
forces and torques and also guarantee constraint satisfaction. The effectiveness of
the new MPC schemes has been demonstrated in a simulation example.

Q5. How to design a fast optimization solver such that the developed MPC
and commutation algorithms can be implemented in real-time?

Research question Q5 has been addressed in Chapter 6. In this chapter we have pre-
sented a new computationally efficient optimization method for solving nonlinear
programming problems. The new method is a variant of SQP in which an arbi-
trary positive (semi-) definite Hessian approximation can be used. This is the main
advantage of the method, since other SQP algorithms generally require good Hes-
sian approximations which can be expensive to compute, especially for large-scale
problems such as an MPC problem with high prediction horizon.

In our new method, the search direction is taken as the interpolation between
the search direction provided by solving the QP subproblem and a feasible search
direction. It is proved that the algorithm converges locally at linear rate to a lo-
cal optimum point of the nonlinear programming problem. Furthermore, a strat-
egy for global convergence is employed to guarantee convergence from any initial
estimates. The effectiveness of the method has been illustrated in two numerical
examples.

For NMPC of linear motors, it appears that the new algorithm is still not fast
enough for real-time implementation. However, the algorithm is implemented in
Matlab code, which is generally slower than C code. By converting from Matlab
code to C code, we expect a significant reduction in computation time, which is
promising for real-time implementation. This will be implemented in our future
work.
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Q6. Can we validate the developed identification, commutation and control
methods in experiments with a real CLM setup?

Research question Q6 has been addressed in Chapter 7. In order to validate the
developed identification, commutation and control methods, we have designed and
constructed an experimental CLM setup in collaboration with ASML. The setup con-
sists of a real industrial linear motor, power amplifiers and an encoder provided
by ASML. Additional force sensors are added in order to measure the forces and
torques produced by the motor in driving and non-driving directions. The setup is
controlled by a dSPACE MicroLabBox development system.

The data-driven modeling method and the optimal commutation method are
validated on the experimental setup. First, identification experiments have been
performed to identify the model of the linear motor in driving and non-driving di-
rections, using the methods developed in Chapter 3. The IV identification method
developed in Section 3.2, which aims to identify both the static nonlinearity and the
linear dynamics, does not provide an accurate estimate. This problem is caused by
the high correlation between the parameters and the huge difference in the values
of the parameters in the parameter vector. How to address this problem requires fur-
ther research on experiment design. As an alternative, the IV identification method
developed in Section 3.3 which identify only the static nonlinearity is employed.
The method successfully delivers an accurate estimate of the model parameters in
both the driving and non-driving directions.

The optimal commutation method using fast optimization algorithm introduced
in Chapter 4 is then implemented successfully on the setup with a fast sampling
frequency of 10 kHz. The experimental results show that, compared to the classical
commutation method, the optimal commutation method reduces the tracking error
in the driving direction. Furthermore, the force and torque in the non-driving direc-
tions are also reduced significantly, in both offset and variation. This result is the
first experimental evidence to prove that the optimal commutation method is able
to compensate for the parasitic forces and torques in the non-driving directions in
linear motors.

8.2 Future work and recommendations

Investigation of the problem of the IV identification method for the driving
direction

In our identification experiments, the IV identification method for the driving di-
rection developed in Section 3.2 does not provide accurate estimates of the model
parameters. As analyzed in Chapter 7, this problem is caused by the high correlation
between the parameters and the huge difference in the values of the parameters in
the parameter vector. To deal with this problem, it is of interest to further investigate
the design of the experiments.
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Fast nonlinear optimization solver for NMPC of linear motors

For future work, we will develop a fast nonlinear optimization solver for the NMPC
of linear motors problem. The new optimization solver developed in Chapter 6 will
be implemented in C code, which is expected to run faster than the Matlab code
which is used for the simulation example in Section 6.8. The C code can then be
deployed to a real-time processor for real-time implementation on the experimental
linear motor setup.

Another interesting topic for future work is how to adapt the interpolation coef-
ficient in the algorithm such that the fastest convergence rate is achieved. Further-
more, it is observed that the NMPC of linear motors problem has a special sparse
structure. For future work, it is of interest to exploit the sparsity of the problem to
write customized fast solver dedicated to solving the NMPC of linear motors prob-
lem.

Robustness and recursive feasibility of the commutation and NMPC problems

In practice, linear motors may need to operate in the presence of high noise and
disturbance. For future work, it is of interest to analyze the robustness properties
of the commutation and NMPC problems. Furthermore, recursive feasibility of the
NMPC for linear motors problem is an important topic which needs to be addressed
in future research.

Extension to other types of electrical machines

Although the identification and compensation methods in this thesis are developed
for coreless linear motors, the methods can also be applied to other type of electri-
cal machines. The main types of electromagnetic forces in electrical machines are
similar: Lorentz force, reluctance force, cogging force and drag force. As a result,
the identification method introduced in Chapter 3 is applicable to other types of
machines. The optimal commutation problem in other types of machines can also
be solved using the fast optimization solver introduced in Chapter 4.
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