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Allocation of Excitation Signals for Generic Identifiability of
Dynamic Networks
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Abstract—This paper studies generic identifiability of dy-
namic networks, in which the edges connecting the vertex
signals are described by proper transfer functions, and partial
vertices are excited by designed external signals. We assume
that the topology of the underlying graph is known, and
all the vertex signals are measured. We show that generic
identifiability of a directed network is related to the existence
of a set of disjoint directed pseudo-trees that cover all the
edges of the underlying graph, based on which, an excitation
allocation problem is studied, aiming to select the minimal
number excitation signals to achieve the generic identifiability
of the whole network. An algorithmic procedure thereby is
devised for selecting locations of the external signals such that
all the edges can be consistently estimated.

I. INTRODUCTION

Dynamic networks can adequately describe a wide class
of complex engineering systems, which appear in various ap-
plications, including multi-robot coordination and distributed
control of power grids [1], [2]. The conventional system
identification mainly focuses on the systems with relatively
simple dynamical structures, e.g., single-input-single-output
(SISO), multiple-input-multiple-output (MIMO), open-loop
or closed-loop systems [3], [4]. However, these classical
data-driven tools seem to be limited when encountering
dynamic networks with complex interconnection structures.
The bridge connecting the classic identification framework
and dynamic networks is initially built in [5], where the
vertices in a network are interpreted as measured internal
signals, and the directed edges represent transfer operators,
referred as modules. Considering external noises and excita-
tion signals, the identification of the modules in a network
can be recast as a closed-loop system identification problem.

Based on this setup, three problems have been addressed.
The first is to detect the topology of a network, see e.g., [6],
[7], where techniques, such as Wiener filters or Bayesian
approaches are taken to obtain sparse estimates. The second
problem is to estimate a desired local module within a
network, see e.g., [8]-[11], which focus on the question:
under what conditions we are able to consistently identify
the dynamics of a selected module in the network? In
contrast, the problem in this paper concerns the structural
identifiability of a full dynamic network, see e.g., [12]-[15]
and the references therein. Assuming that the topology of a
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network is known a priori, a model set is considered in which
all the models are associated with the given topology. Then
identifiability essentially reflects the ability to distinguish
between these models on the basis of measurement data.

In the literature, there are two classes of network identifi-
ability, namely, global identifiability [13], [15] that requires
all the models in the set to be distinguishable, and generic
identifiability [14], [16], which means that almost all models
in the model set can be distinguished. In the study of
identifiability, two problem settings of dynamic networks are
considered. In e.g., [14], [15], all vertices are excited by
external signals, while only a subset of vertices is measured,
and in e.g., [13], [16], all internal variables are supposed
to be measured, while only partial vertices are excited or
influenced by noises. In this paper, the generic identifiability
is of particular interest. Given the topology of a network
consisting of internal signals, we aim for a systematic scheme
that finds the minimum number of excitation signals for the
generic identifiability of a dynamic network. To the best
of our knowledge, such a design problem has not been
addressed in the context of generic identifiability for dynamic
networks.

Inspired by [13], [14], we analyze the generic identifia-
bility from a graph-theoretic point of view and provide a
new characterization using the concept of disjoint pseudo-
tree covering. It is shown that a directed dynamic network
is generically identifiable if there exist a set of disjoint
pseudo-trees covering all the edges of the underlying graph,
and the external signals can be allocated at the roots of
these pseudo-trees. Thereby, we propose a graph merging
approach, which first partitions the network into several
minimal disjoint pseudo-trees and then iteratively aggregates
pairs that are mergeable. The merging process is consistent
with the operation on the characterization matrix of the
disjoint pseudo-tree covering.

The rest of this paper is organized as follows: In Section II,
we recap some basic notations in graph theory and intro-
duce the network model. Section III then presents a graph-
theoretic approach to the allocation of excitation signals, and
finally, concluding remarks are made in Section IV.

Notation: Denote R as the set of real numbers, and R(q)
is the rational function field over R with variable g. A;;
denotes the (7, j)-th entry of a matrix A. The cardinality
of a set V is given by |V|. Let G be a directed graph, and
we denote V(G) and E(G) as the vertex set and edge set
of G, respectively. The union of two graphs G; and G is
denoted by G := G; U Gy, where V(G) = V(G1) UV (G2)
and E(G) = E(G1) U E(Gs).
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II. PRELIMINARIES
A. Graph theory

We provide necessary terminologies and concepts from
graph theory and refer to [1], [17] for more details. The
topology of a network is characterized by a graph G that con-
sists of a finite and nonempty vertex set V := {1,2,--- , L}
and an edge set £ C V x V. For a directed graph, each
element in & is an ordered pair of elements of V), and if
(i,7) € &, we say that the edge is incident from vertex i to
vertex j. The vertex ¢ is the in-neighbor of j, and j is the
out-neighbor of i. Let N;” and ;' be the sets that collect all
the in-neighbors and out-neighbors of vertex 4, respectively.
Let S be the set that collects all sinks of G, namely,

S(@):={ieV(9) | V| =0} ()

A graph G is called simple, if G does not contain self-
loops (i.e., £ does not contain edges of the form (i, 1), V 7),
and there exists only one directed edge from one vertex to
its each out-neighbor. A directed path in a simple graph
connecting vertices i and i,, is a sequence of edges of the
form (ix_1,ir), k = 1,--- ,n, and every vertex appears at
most once on the path. Two directed paths are vertex disjoint
if they do not share any common vertex, including the start
and the end vertices. A connected directed simple graph T is
a directed tree (or an arborescence), if there exists a vertex
r, known as the root vertex, from which there is exactly one
directed path from r to every other vertices in 7. A vertex i
in a tree T is called a leaf if [N;"| = 0, and the vertices that
are neither the root nor leaves of T are called the internal
vertices of T'. In a rooted tree, a vertex ¢ is a child of vertex
7 if there is a directed edge incident from j to ¢, in which
case, vertex j is the (only) parent of i.

B. Dynamic network model

Consider a simple directed graph G = (V, E) with vertex
set V = {1,2,---,L} and edge set £ C V x V. Then,
following the basic setup of [5], [13], a dynamic network
associated with G is defined as follows.

w(t) = Glg)w(t) + R(q)r(t), 2)

where ¢! is the delay operator, i.e. ¢~ 'w;(t) = w;(t —1).
w(t) € R and r(t) € RX are vectors of measured internal
signals and external excitation signals, respectively. Let R C
V be the set of vertices that are excited by the external
signals r(t), and K := |R|. Each vertex in R is called a
excited vertex. Throughout the paper, the transfer matrices
G(q), R(q) satisfy the following properties [5], [13].

o All the entries of G(q) are strictly proper transfer
functions to be identified (i.e., parameterized), and the
entries of R(q) are known proper transfer functions.

o Each row and each column of R(g) contain only one
nonzero entry, i.e., each vertex in R is influenced by a
unique external excitation signal.

o The network G is well-posed, i.e., (I—G(q)) ™" is proper
and stable. Moreover, R;;(q) is stable.

1

In this paper, we are interested in the condition under
which all the transfer functions in G(q) can be consis-
tently identified from the external excitation signals 7(¢) and
the measurement data w(t). Thereby, we assume that the
topology is known a priori, and all the vertex signals w(t)
are measured. Then, we aim to allocate a minimal number
of external excitation signals such that the full network is
generically identifiable.

III. MAIN RESULTS
A. Generic identifiability: a graph-theoretical condition

Identifiability is basically the ability to uniquely identify
transfer functions in G(g) from excitation signals r(¢) and
the measurement date w(t). Following [13], we denote a set
of parameterized matrix-valued functions

¥:={o(q,0) = (G(q,0), R(q)),0 € O}

as the network model set for a network described in (2),
where G(g,0) is a strictly proper transfer function for all
0 € O. Let

T(q,0) = (I —G(q,8)) " R(q) 3)

Then, the generic identifiability of ¥ is defined as follows.
Definition 1 (Generic identifiability): The network model
set 3 is generically identifiable if the implication

T(qa 01) = T((LHO) = O-(Qa 01) = U(q790)7 (4)

holds for all parameters 6, 6y € © except possibly those
lying on a zero measure set in O.

We refer to e.g., [14], [16] for more details on the definition
of generic identifiability. The generic identifiability of every
module Gj; is implied by the model set ¥ being generically
identifiable. If all the modules are generically identifiable, we
then say the dynamic network G is generically identifiable.
In the following lemma, a graph-theoretic condition has been
studied for checking generic identifiability.

Lemma 1: [14], [16] A dynamic network is generically
identifiable if and only if the maximum number of mutually
vertex disjoint paths from R to N is greater than or equal
to |V, | for all i € V.

Note that the characterization of the generic identifiability
in Lemma 1 relates to all the vertex disjoint paths from the
excited vertices (i.e., the vertices in R) to the in-neighbors
of each vertex in a network. For the allocation problem
studied in the current paper, the use of the condition in
Lemma | may be restricted, as it requires a path check of
each vertex in the network. In contrast, this paper proposes a
more integrated graph-theoretic condition for characterizing
the generic identifiability.

Before proceeding, the concept of directed pseudo-trees is
introduced.

Definition 2 (Directed pseudo-trees): A connected
directed graph 7 is called a (directed) pseudo-tree if
IV, | <1, forallie V(T).

The above concept of pseudo-trees is an extension of
its definition in the undirected case, in which they are
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. root ‘ leaf

O internal vertex

Fig. 1. Typical examples of pseudotrees, in which roots, internal vertices
and leaves are labeled with different colors. Note that a pseudotree may
have multiple roots.

also referred to as unicyclic graphs, see e.g., [18], [19].
Analogous to directed tree graphs, we have the following
definitions:

e A vertex in the directed pseudo-tree 7 a root of T, if
there is exactly one directed path from this vertex to
every other vertices in T

e A vertex in 7 is a leaf of T, if it has no out-neighbors
in T,

e A vertex in 7T that is neither a root nor a leaf is an
internal vertex of T.

The above definitions are illustrated in Fig. fig:pseudotrees,
where two typical directed pseudo-trees are shown. Fur-
thermore, we call a directed pseudo-tree minimal if it only
contains one root and all the out-neighbors of the root as
leaves. It is remarked that directed pseudo-trees allow for
multiple roots, and any directed pseudo-tree can be expressed
as a union of a directed tree with a possible directed edge
incident from a leaf or an internal vertex of the tree to its root.
Thus, directed pseudo-trees are more general definition than
directed trees. Hereafter, we will drop the word ‘directed’
when we refer to a directed pseudo-tree, and denote Y(7) as
a set that collects all the roots of the pseudo-tree 7. Related
to the concept of vertex disjoint paths, disjoint directed
pseudo-trees are defined.

Definition 3 (Disjoint pseudo-trees): Consider two
pseudo-trees 77 and 7> as subgraphs of a directed graph
G. 71 and 75 are called disjoint in G if the following two
conditions hold.

1) E(Ti)NE(Tz) = 0;

2) Foreach j € V(T1)UV(T2), all the edges in VE(T7)U

E(7z) that are incident from j are included in E(77)
or E(73).

The first condition means that disjoint pseudo-trees do not
share common edges, and the second condition requires that
all the edges incident from each vertex should be included
in one pseudo-tree. As a special case, if both 7; and 73 are
directed rooted trees, then 77 and 75 do not share the same
root or any common internal vertex. We illustrate the concept
of disjoint pseudo-trees with the following example.

Example 1: In Fig. 1, to illustrate disjoint pseudo-trees in
a directed graph, we decompose two graphs in (a) and (b)
into two pseudo-trees. By Definition 3, the two pseudo-trees

(a) (b)

(©) (d)
Fig. 2. Illustration of disjoint pseudo-trees, in which different pseudo-trees
are induced by the edges with distinct colors. In (a) and (b), the pseudo-
trees are not disjoint, since the outgoing edges from the gray vertices are

assigned to different pseudo-trees. In contrast, the pseudo-trees in (c) and
(d) are considered to be disjoint pairs.

in both (a) and (b) are not disjoint. In (a), the two trees share
the same root and an internal vertex in the center. In (b),
the gray vertex in the center violate the second condition
in Definition 3, as its two outgoing edges are included in
different pseudotrees. If we take different decompositions of
the networks, the two pseudotrees obtained in (c) and (d) are
shown to be disjoint.

Next, the concept of disjoint-edge covering for a directed
graph is introduced.

Definition 4 (Disjoint-edge covering): Consider a
directed graph G, and let 71,75, -+, Tk be a collection of
connected subgraphs of G. The edges of G are covered by
7-17757"' T if E(’Tl) U E(,TQ) U---u E(TK) = E(g)
The set IT := {71, 72, -+, Tk} is called a covering of G.
Moreover. 11 is disjoint pseudo-tree covering, if all the
elements in IT are pseudo-trees, which are disjoint to each
other.

With the definition of the disjoint pseudo-tree covering,
the following lemma is given.

Lemma 2: For any directed network G, there always exists
a set of disjoint pseudo-trees that cover all the edges of G.

Proof: For any directed graph G, a set of disjoint
pseudo-trees can be constructed as follows. For each vertex
ke V(G)—S(G), with S(G) the set of sinks, we construct a
directed star tree (i.e., a minimal pseudo-tree) with k as the
root and the vertices in ;" as leaves. Then, |V (G) — S(G)|
minimal pseudo-trees are formed, which are disjoint, since
any two trees do not share a common root or any common
internal vertex. [ ]

Now, we are ready present the main conclusion.

Theorem 1: Consider a directed network G, and let R =
{m1,72,-- , 7k} C V(G) be the set of excited vertices.
Then, the network G is generically identifiable if there
exists a disjoint pseudo-tree covering of G, denoted by
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= {7, 7, -
{1,2,--- ,K}.
Proof: Assume that there exist a disjoint pseudo-tree
covering, IT = {71,732, -, Tk}, and in each pseudo-tree
Tk, one of its root vertices is excited by an external signal
ri(t), i.e., 7; € T(Tx). Since there does not exist any two
vertices in a same pseudo-tree sharing a common child, for
any vertex i € V(G), all the edges incident from vertices
in N, to ¢ should belong to different pseudo-trees, and
IN;7| < K holds. Thus, there exist at least [N, | vertex
disjoint paths from {7y, 72, -+, 7k} to N, . As each 7;, a
root of a pseudo-tree 7;, is excited, the generic identifiability
of G then immediately follows from Lemma 1. |

The following result is obtained by directly applying
Theorem 1.

Corollary 1: The minimal number of external signals that
are needed for the generic identifiability of a directed graph G
is upper-bounded by the minimal number of disjoint pseudo-
trees that cover all the edges of G.

-, Tk} such that 7, € Y(7;), for all i €

B. Excitation allocation: a graph merging approach

In this section, we aim to solve an excitation allocation
problem, which aims for a minimal number of external
excitation signals which are used to consistently estimate
the strictly proper transfer functions associated with all the
edges of a network.

Problem 1: Given a directed network G, find R C V(G)
as the set of excited vertices such that |R| is minimized, and
G is generic identifiable.

Note that finding the exact minimal number of the ex-
citation signals and their locations is difficult in general.
The previous subsection shows that the upper bound of this
number actually relates the disjoint pseudo-tree covering.
Then, to solve the above problem, we find the minimal
number of disjoint pseudo-trees, which are not rooted at R
in the network, such that all the edges are covered. At this
point, Problem 1 is converted to a combinatorial optimization
problem. In this section, we devise an algorithmic procedure
to partition a graph into disjoint pseudo-trees with as less
number as possible.

Lemma 2 indicates that for any directed graph G, we can
always find a disjoint pseudo-tree covering,

Oo = {773+, Ty ) (5)

in which each element is a minimal pseudo-tree rooted at
a vertex that is not a sink. We start with Iy as our initial
disjoint pseudo-tree covering, and the strategy is to recur-
sively merge the pseudo-trees until there are no mergeable
pseudo-trees in a covering. Specifically, the mergeability of
pseudo-trees are defined as follows.
Definition 5 (Mergeability): Consider two disjoint
pseudo-trees 7; and T5. We say 77 is mergeable to 7o, if
1) the union of 71 and 7y, i.e., (V(T1)UV(T2), E(T1)U
E(T3)) is also a pseudo-tree;
2) there is a directed path from vertex 7 to vertex j, for
all i € Y(73) and j € V(T7).

The mergeability from a pseudo-tree 77 to 72 requires that 77
and 73 does not share any common leaf and internal vertex.
As a result, merging 77 and 7> yields a new pseudo-tree 73,
where T(72) C Y(73). Note that 7; being mergeable to Tz
does not necessarily mean that 75 is also mergeable to 7.

Given a disjoint pseudo-tree covering of G. We introduce
a characteristic matrix M, whose (¢, 7)-th entry is defined
as follows.

1 if 7; is mergeable to 7j;
M(i,j) =@ if V(T;)NV(T;) =0; (6)

0  otherwise.

Related to the characteristic matrix, the following nota-
tions and operations are defined. Let M(¢,:) and M(:, )
be the i-th row and j-th column of a matrix M € M, and
denote

M := {1,2,0}. (7)

Then we have M € M1 where TI is a disjoint pseudo-
tree covering. We define c = a®b =b®a, with a,b,c € M,
as a commutative operation, which follows the rules:

101=1,100=0, 1o =1,
000=0, 2600=0, GO =0. (8)

Furthermore, let p, 1 be two column (or row) vectors of the
same dimensions in M. Then, p ® p = p ® p stands for
an entrywise operation that returns a new column (or row)
vector, whose ¢-th element is given by p; © ;.

For a given disjoint pseudo-tree covering II with |II| =
n and a set N := {1,2,--- ,n}, we define the following
function

F: M™" x Nx N - MO-Dx(=1) )

and M = .Z(M,,j) is a reduction of M obtained by the
following algebraic operations:

1) M= M; .

2) Row merging: M(i,:) = M(i,:) © M(j,1);

3) Column merging: M(:,7) = M(:,3) ©@ M(:,j);

4) Remove j-th row and column of M.

The operation . (M, 4, j) means that 7; is merged to 7;.
It is also worth emphasizing that the order of the row and
column operations can be switched, which will not affect
the outcome M. Furthermore, reducing the characteristic
matrix is consistent with the change in the disjoint pseudo-
tree covering of the network. Specifically, if in II, a pseudo-
tree 7; is mergeable to 7, then .#(M,4,j) produces a
(|| — 1) x (|II| — 1) characteristic matrix M representing
a new disjoint pseudo-tree covering I1, which contains one
less element compared to II.

The foundation of the merging algorithm has been laid
above. Now we present a greedy scheme, aiming to find a
disjoint pseudo-tree covering with the minimal number of
elements.

Step I: For the initial disjoint pseudo-tree covering II =
IIy in (5), we obtain its characteristic matrix M.
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Step 2: Find an entry M(i,5) = 1 such that the i-th
row contains only one single “1” entry, while the others are
either “0” or “@”. If there exist multiple rows containing
a single “1” entry, then we choose the one with more
“@” entries. Then, we merge 7; to 7;, and update M as
M — F(M,i,j). We repeat this step until there is no row
containing only one single “1” entry.

Step 3: We find an entry M(4,j) = 1 such that the i-th
row with the most “@” entries. Then, we merge 7; to 7,
and update M as M <« F(M,i,j). We repeat this step
until there is no row containing “1” entries.

We further explain the above steps. In the first step,
we merge 7; to 7;, if 7; is the only pseudo-tree that
T; is mergeable to. If there are multiple pairs satisfying
this condition, we then select the one that has more non-
overlapping pseudo-trees. Two disjoint pseudo-trees are non-
overlapping if they do not share any vertex in common. By
doing so, the current merging will cause less effect on the
follow-up merging. A subsequent operation in Step 2 follows
a similar mechanism and merge the left mergeable pseudo-
trees together.

The number of the pseudo-trees in the final covering is the
number of excitation signals that are designed to stimulate
the network for generic identifiability. The locations of these
excitation signals can be assigned to distinct vertices that are
the roots of the generated disjoint pseudo-trees. We have to
emphasize that the presented algorithm is a greedy approach
and does not always provide a minimal set of pseudo-trees.
However, the presented algorithm gives an effective solution
to allocate a smaller number of excitation signals for the
generic identifiability of a given dynamic network. In the
following subsection, we illustrate the steps of the algorithm
using an simple network example.

C. Case Study

Consider a directed simple graph with 10 vertices, as
shown in Fig. 3. An initial disjoint pseudo-tree covering is
given as Iy = {70, 70,---, 7L}, in which each pseudo-
tree has a single root vertex, which is not a sink of G. By
the definition in (6), we construct the following matrix for
characterizing the mergeability.

Mo = (10)

RRoRvRoyoo
QRO ~OF
coR P RNooRN
coQ oo N
N—rocoocoon8NooO
oo oo OO ON
NRooocool\Noo
coroococol N
col R, ool N

Note that M(1,2), Mo (2,3), and M(8,5) are the only
“1” entries in their rows. In the first row, there are more “&”
elements. Following Step I, we apply the reduction M; =

Fig. 3. A directed simple graph with 11 vertices, which is decomposed
into 9 disjoint pseudo-trees, which are labeled with different colors.

F (Mo, 1,2), which yields

01 2000 2 @
1 00 20 @ 0 0
2 0 0 @0 @ 0 0
0 2 2 010 0 @

Mi=1g 7 71 000 o 1| €M7 Ay
0 2 2 000 1 @
% 0 0 100 0 0
% 0 0 @02 0 0]

The resulting disjoint pseudo-tree covering is then given
I = {7}, T, ,T¢}, where T8 = TP U TS and 7' =
TS, forall i =2,3,--- 8.

We continue to reduce the characteristic matrix using the
same principle and obtain

My = F(My,1,2) =

(=N el o ool
coRR~N oo
Qrooo R o
oo O~ OO
Roococoon o
oo rR OO OO
coRR~\N oo

Mz = F(Ma,3,4) =

[N Mo el o Nt
oo\~
oo o0 OO
Rooof o
cocorRr o oo
oo\~ OO

and

My = F(Ms,4,5) = e M*3,

o o oo
SO R OO
o O oo
o O oo
O = OO

0 0 0 0

The last matrix M, corresponds to the disjoint pseudo-tree
covering I, = {T;%, T, T, T3, T2}, where 7% = T U
TIUTS. T = T2 T = TOUTY, Tif = TOUTY. Tyt = T3

The disjoint pseudo-tree covering II3 is illustrated in Fig. 4.
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Fig. 4.  After Step 1 of the proposed approach, the directed graph is
decomposed into 5 disjoint pseudo-trees, labeled with different colors.

Fig. 5. The resulting disjoint pseudo-tree covering of the directed graph,
where each pseudo-tree is labeled with a different color. One of the solution
for allocating the excitation signals is to assign the shadowed vertices as
the excited ones.

We continue to apply Step 2 to combine the remaining
mergeable pseudo-trees in II. Since the third row of My
contains two “1” entries, we then take the following opera-
tion:

o O O

0
0
0

o O O
o O O

Ms = F(My,3,5) = , (12)

0 0 0O

which yields the disjoint pseudo-tree covering IIs =
{T?, 7,7, T}, as shown in Fig. 5, with 7° = TP U TR U
T2, T2 =T, T3 = TPUTLUTY, and TP = TLUTY. (We
may also do M, = % (My,3,2).) Then, we find that there
does not exist mergeable pairs in II5 any more. Thus, four
excitation signals are allocated at the roots of the pseudo-
trees for the generic identifiability of the overall network.
One choice is to select the vertices labeled by shadowed
vertices in Fig. 5.

IV. CONCLUSION

In this paper, we have considered the allocation of external
excitation signals for the generic identifiability of dynamical
networks. A novel graph-theoretic condition of the generic
identifiability has been provided, which relates to the disjoint

pseudo-tree covering of the network. Based on the condition,
we devise an efficient algorithm aiming to find the minimal
number of excitation signals and their locations such that the
network is generically identifiable.
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