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Abstract— This paper addresses the problem of consistently
estimating a continuous-time (CT) diffusively coupled network
(DCN) to identify physical components in a physical net-
work. We develop a three-step frequency-domain identification
method for linear CT DCNs that allows to accurately recover all
the physical component values of the network while exploiting
the particular symmetric structure in a DCN model. This
method uses the estimated noise covariance as a non-parametric
noise model to minimize variance of the parameter estimates,
obviating the need to select a parametric noise model. The
method is illustrated with an application from In-Circuit
Testing of printed circuit boards. Experimental results highlight
the method’s ability to consistently estimate component values
in a complex network with only a single excitation.

I. INTRODUCTION

Physical dynamic networks consist of interconnections of
physical components, which can be described by diffusive
couplings. They can model various processes in numerous
fields, such as electrical circuits, mechanical machines, and
chemical processes [1]. System identification uses statistical
methods to construct mathematical models of dynamical
systems from measured data [2] and is widely used in fault
detection and diagnosis (FDD) [3]. As physical systems
such as printed circuit board assemblies (PCBAs) grow in
complexity, there is an increasing interest in physical network
identification to effectively identify the dynamics of inter-
connected systems. One application of this technique is In-
Circuit Testing, which diagnoses faults in PCBAs by utilizing
data from test probes. As PCBAs can be modeled as physical
dynamic networks, the idea is to estimate each electronic
component value with the network structure, compare it with
the expected value, and analyze the difference in values to
verify its correctness.

Several data-driven methods are available to identify phys-
ical components in networks. For example, physical systems
can be identified by estimating structured state-space models
[4] [5]; physical systems can also be treated as directed
dynamic networks with specific structural constraints in [6],
where prediction error methods are used for estimation. As
a more direct approach, a DCN model has been developed
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in [7] where the physical system is represented as a non-
directed network, and a discrete-time (DT) multistep algo-
rithm has been developed to identify structured polynomial
models of DCNs incorporating the network structure. The
structured polynomials directly represent the physical com-
ponent values of the network. However, since physical com-
ponent values are most often represented in the continuous-
time domain, there is a need for developing an estimation
algorithm for estimating a continuous-time model in the same
DCN setting. This will be the topic of the current paper.

Numerous estimation methods involving instrumental vari-
ables have been used to identify CT models [8] [9]. Indirect
and direct CT identification approaches for dynamic net-
works that are modeled as interconnected CT transfer func-
tions have been developed in [10]. Frequency domain-based
techniques have been applied to identify CT and DT models
directly within the same algorithm. Alternatively, CT systems
with multiple inputs and multiple outputs (MIMO) can
be identified using a two-step frequency-domain approach
by first estimating the non-parametric frequency response
functions (FRF) and a frequency-dependent noise covariance,
and then using these to identify parametric transfer function
models [11]–[13]. Utilizing these two-step methods, a local
module identification method in dynamic networks has been
proposed in [14]. As the physical component values are
intertwined within the transfer function’s coefficients, it
is preferable and straightforward to retrieve these values
from the structured polynomial matrix of the DCN model.
Therefore, in this paper, we aim to develop a method that
directly identifies CT DCNs while preserving the physical
network structure, enabling accurate estimation of the net-
work’s physical components.

The research question we aim to answer in this paper is:
How can we consistently identify the physical component
values in a DCN model in CT? This paper addresses this
problem by directly identifying a CT DCN model in the
frequency domain. An identification procedure is developed
by extending the frequency-domain approach in [13] to
DCNs, and a consistent estimation is shown.

After presenting the DCN and its frequency-domain model
in Section II, we present a three-step frequency-domain
identification algorithm in Section III. This algorithm will
be applied to an In-Circuit testing experiment, of which
the results are shown and discussed in Section IV. The
conclusion is provided in Section V.

We consider the following notation throughout the paper.
A(p) is a polynomial matrix with A(p) =

∑na

`=0A`p
`, and

its (j, k)-th element [A(p)]jk := ajk(p) =
∑na

`=0 ajk,`p
`.
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II. DIFFUSIVELY COUPLED NETWORKS

A. Continuous-time model

A linear diffusive coupling describes an interconnection
among node signals in which the coupling strength is
proportional to the signal difference between the nodes.
This coupling yields symmetric interactions for the linear
components. We can describe the full dynamics and topology
of linear DCNs as follows according to [7].

Definition 1 (DCN) A DCN consisting of L node signals,
collected in w(t), and K excitation signals r(t), is described
as

A(p)w(t) = B(p)r(t) + F (p)e(t), (1)

where p is the differential operator, i.e., p`wj(t) = w
(`)
j (t),

w
(`)
j (t) is the `-th order derivative of node signals wj(t),

• A(p) =
∑na

`=0A`p
` ∈ RL×L[p],with ajk(p) = akj(p),

∀k, j, and A−1(p) is stable.
• B(p) ∈ RL×K [p].
• F (p) ∈ RL×L(p) is monic, stable, rational, and the

inverse matrix is also stable. �

The DCN is assumed to be connected, which means that
there is a path between each pair of nodes. The polynomial
matrix A(p) is symmetric and non-monic, capturing the
symmetric diffusive couplings in the system. The polynomial
matrix B(p) characterizes the dynamics through which the
excitation signals r(t) enter the network and is chosen in
this paper as binary and known. To model the unknown
disturbance signals, F (p) is a rational matrix that captures
the noise dynamics, and e(t) represents a wide-sense station-
ary white noise process that is independent and identically
distributed (i.i.d.). The input/output signals follow the band-
limited measurement assumption.

Remark 1 Note that pre-multiplying (1) with A−1(p) yields
a transfer function form. If F (p) is a polynomial or identity
matrix, the model (1) yields a non-monic ARMAX-like or
non-monic ARX-like model structure, respectively. In this
paper, F (p) is chosen as a polynomial matrix, resulting in
a nonmonic ARMAX-like model structure. �

We can reformulate (1) by decomposing A(p) into X(p)+
Y (p) as

X(p)w(t) + Y (p)w(t) = B(p)r(t) + F (p)e(t), (2)

where X(p) is a diagonal polynomial matrix which repre-
sents the grounded dynamics of the DCN; Y (p) is a Lapla-
cian1 polynomial matrix of which the off-diagonal elements
represents the interconnected dynamics of the DCN. The
symmetric polynomial matrix A(p) = X(p) + Y (p) is used
to represent the dynamics of the DCN through which X(p)
and Y (p) can be uniquely recovered.

1A Laplacian matrix is a symmetric matrix with nonpositive off-diagonal
elements and with nonnegative diagonal elements that are equal to the
negative sum of all other elements in the same row (or column) [15].
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Fig. 1. A 10-node RLC circuit with inductors (Ljk), resistors (Rjk),
capacitors (Cjk), and ground nodes(GNDj ).

For example, in the 10-node RLC circuit of Fig. 1, X33(p)
contains the dynamics of C30, R30, and L30; while Y23(p) =
Y32(p) contains the dynamics of R23, and L23.

B. Frequency-domain model
Consider the DCN system described in (1) where CT

signals w(t), r(t), and e(t) are sampled in time intervals
tn = nsTs (ns = 0, ..., N − 1) with a sampling time Ts.
The Discrete Fourier Transform (DFT) is used to transform
the time-domain model to the frequency-domain. The DFT
samples S(k) for the signal s(tn) are defined as

S(k) =
1√
N

N−1∑
tn=0

s(tn)e−j2πktn/N . (3)

Applying this DFT to the signals w(tn), r(tn), and e(tn)
results in samples W (k), R(k), and E(k), respectively.
Accordingly, the DCN frequency-domain model is obtained.

Definition 2 (Frequency-domain model) The frequency-
domain DCN model is defined as

A(Ωk)W (k) = B(Ωk)R(k) + F (Ωk)E(k) + C(Ωk). (4)

Pre-multiplying with A−1(Ωk) on both side gives

W (k) = A−1(Ωk)B(Ωk)︸ ︷︷ ︸
G(Ωk)

R(k) +A−1(Ωk)F (Ωk)︸ ︷︷ ︸
H(Ωk)

E(k)

+A−1(Ωk)C(Ωk)︸ ︷︷ ︸
T (Ωk)

, (5)

where Ωk is the frequency variable for sample k (k =
1, ..., N) and defined as Ωk = jωk in CT and Ωk = ejωkTs

in DT, ωk = 2πkfs
N and fs = 1

Ts
is the sampling frequency;

G(Ωk) ∈ CL×K is the input/output dynamics, and H(Ωk) ∈
CL×L is the noise model; T (Ωk) ∈ CL×1 is the transient
term including the system and noise transient in time domain,
which cause leakage errors in the frequency domain [11]. �

Moreover, for using the non-parametric noise model later
in the paper, the Ωk-dependent noise covariance is defined
as

CV (k) = Cov(V (k)),with V (k) = H(Ωk)E(k). (6)



III. FREQUENCY-DOMAIN IDENTIFICATION

In this section a three-step frequency-domain identification
approach is presented to consistently estimate the physical
components in a DCN. The FRF and frequency-dependent
noise covariance are estimated in the first step using a non-
parametric methodology. In the second step a parametric
DCN model is estimated on the basis of the FRF and a
non-parametric noise model, through linear regression steps
in a Sanathan-Koerner-type of iteration. In the third step this
parametric model is refined through a (nonconvex) maximum
likelihood estimation (MLE). This approach offers two main
advantages: (1) avoiding the noise model parameterization
and the need to determine its structure and order; (2) with
the transient term removed in the non-parametric model, the
FRF estimation serves to extract “transient-free” input/output
data, facilitating the parametric identification.

A. Step 1: non-parametric identification

The first step is to estimate the FRF G(Ωk) and the
frequency-dependent noise covariance CV (k). We will use
the Local Polynomial Method (LPM) [13], which is an
advanced approach to accurately estimate the non-parametric
FRF and noise covariance matrix, and that is currently
favoured over more classical windowing approaches. It is
applicable to general i/o data, i.e. also to non-periodic
excitation [13]. In this paper, LPM is implemented using the
‘Frequency Domain Toolbox’ in [13]. Following the LPM
method [13], we estimate polynomials over a short frequency
range to obtain a local smooth least-squares approximation
of the frequency functions. The FRF G(Ωk) and the transient
term T (Ωk) of the network model (5) are approximated
around the selected central frequency k in each frequency
band k + r with r = −n,−n+ 1, ...0, ..., n− 1, n,

W (k + r) =

[
G (Ωk) +

τ∑
s=1

gs(k)rs

]
R(k + r)

+ T (Ωk) +

τ∑
s=1

ts(k)rs + V (k + r), (7)

=ΘZ(k + r) + V (k + r), (8)

where τ is the order of the polynomial; L× (τ + 1)(K + 1)
matrix Θ collects all the polynomial coefficients as Θ =
[ G (Ωk) g1(k) ... gτ (k) T (Ωk) t1(k) ... tτ (k) ];
and (τ + 1)(K + 1) × 1 vector Z collects the input data.
Collecting (8) in the frequency band k+ r (2n+ 1 samples)
at central frequency k and stacking them in a matrix gives

Wn = ΘZn + Vn, (9)

where, Wn, Zn and Vn are L × (2n + 1), (τ + 1)(K +
1) × (2n + 1), and L × (2n + 1) matrices, respectively.
The parameter matrix estimate Θ̂ at central frequency k is
obtained by minimizing a least squares cost function locally

Θ̂ = arg min
Θ
||Wn −ΘZn||2F , (10)

where, for any matrix M , ||M ||F is the Frobenius norm of
matrix M . The optimization (10) is solved by using a nu-
merically stable method (the singular value decomposition).
The estimated L×K matrix Ĝ(Ωk) is extracted from Θ̂

Ĝ (Ωk) = Θ̂[:,1:K] = WnZ
H
n (ZnZ

H
n )−1

[:,1:K], (11)

where MH is the Hermitian conjugate transpose of a complex
matrix M and Θ̂[:,1:K] represents the first K columns ex-
tracted from the matrix Θ̂. Finally, substituting the estimation
of the polynomial coefficients into (9), we can get the non-
parametric noise estimation,

V̂n = Wn − Θ̂Zn = Wn[I2n+1 − ZH
n (ZnZ

H
n )−1Zn]. (12)

With this, the estimated noise covariance ĈV (k) is obtained
from the residual of (10) in line with [11],

ĈV (k) =
V̂nV̂

H
n

2n+ 1− (τ + 1)(K + 1)
. (13)

By varying the central frequency k over all frequencies, we
can find the estimates (11) and (13) for the whole range of
frequencies.

Remark 2 The order τ of the polynomials is chosen as 3
to compromise leakage and interpolation error. The quality
of the noise model depends only on the frequency bandwidth
2n+ 1 and the order of the local polynomial approximation
τ . Using this non-parametric noise model avoids performing
a model order selection process as is required for classical
PEM-based parametric identification. �

B. Step 2: structured polynomial matrix identification

In this step a parametric DCN model is estimated on
the basis of the frequency domain data obtained in Step 1.
The method is shown to lead to consistent results, while
exploiting a constrained convex optimization.

We consider a parametric model set,

M = {(A(p, θ), B(p, θ), C(p, θ)), θ ∈ Ψ ⊂ Rd}, (14)

with d ∈ N, where θ includes all unknown parameters of
the DCN model A(p), B(p) and C(p). Besides, the data
generating system S is denoted by,

S = (A0(p, θ0), B0(p, θ0), C0(p, θ0), F 0(p, θ0)). (15)

The condition that the data generating system belongs to the
considered model set is needed for a consistent estimate.
Since the noise model is not parameterized, the noise model
is independent of the plant model. We only need P0 ∈
M for a consistent estimate in this paper, with P0 =(
A0(p, θ0), B0(p, θ0), C0(p, θ0)

)
.

Proposition 1 The DCN is identifiable if the following con-
ditions are satisfied according to [7] and [16]:

1) The polynomials A(p) and B(p) are left-coprime.
2) There exists a permutation matrix P that leads to

[A0 A1 ... Ana B0 B1 ... Bnb
]P = [D U ] with D

square, diagonal, and full rank.
3) There is at least one excitation signal, i.e., K ≥ 1.



4) There exists at least one constraint on the parameters
of A(p, θ) and B(p, θ) that ensures Γθ = υ 6= 0, where
Γ is a matrix with full row-rank. �

Remark 3 The first condition ensures that there are no
common factors between A(p, θ) and B(p, θ). The non-
monicity of the polynomial matrix A(p, θ) is addressed in the
second and fourth conditions, guaranteeing the uniqueness
of this model representation. �

As the transfer function G(Ωk, θ) is defined as the ratio
of two polynomial matrices in (5), a commonly used method
to identify this parametric G(Ωk, θ) would be a Gaussian-
Newton (GN) based method in which the following nonlinear
output error criterion is minimized,

θ̂=argmin
θ

1

N

N∑
k=1

||W (k)−G(Ωk, θ)R(k)−T (Ωk, θ)||2F.

(16)
However, there is no guarantee of reaching the global min-
imum in such non-convex optimization, possibly leading to
inaccurate physical component estimates in the network. To
address this problem, we follow the idea of the SK-iteration
algorithm [17], where in the i-th step, the parameter estimate
is determined by

θ̂(i) = arg min
θ

1

N

N∑
k=1

‖A(Ωk, θ̂
(i−1))−1· (17)

[A(Ωk, θ)W (k)−B(Ωk, θ)R(k)− C(Ωk, θ)]‖2F.

When the algorithm converges, its stationary point is ex-
pected to be close to the global minimum of (16).

In order to arrive at an estimate with reduced variance, it
would be attractive to apply an additional frequency weight-
ing to the criteria (16) and (17), reflecting the dynamics of
the noise model. The most obvious option for this would be
the non-parametric noise model estimate ĈV (k)

1
2 . However,

as shown in [13, Chapter 12] this will also introduce a bias
in the estimates, because of the fact that ĈV (k) and W (k)
are not independently distributed.

As an alternative, it is suggested and analyzed in [13,
Chapter 12] to employ the sample mean and sample covari-
ance of the node signals W (k), derived from the LPM es-
timate, as they are asymptotically independently distributed.
Utilizing the non-parametric estimate matrix Θ̂ in (10), the
sample mean Ŵ (k) of W (k) is calculated as

Ŵ (k) = Ĝ (Ωk)R(k) + T̂ (Ωk) , (18)

where Ĝ (Ωk) is the FRF estimate obtained from Θ̂ in
the non-parametric identification part (11) and T̂ (Ωk) is
the transient term given as T̂ (Ωk) = Θ̂[:,K(R+1)+1] (the
K(R+1)+1-th column of Θ̂). The sample covariance ĈW (k)
of Ŵ (k) can be calculated from the noise covariance model
obtained from the non-parametric part as

ĈW (k) = (ZH
n (ZnZ

H
n )−1Zn)[n+1,n+1]ĈV (k). (19)

Remark 4 The asymptotic behaviors and the related proof
of the sample mean and sample covariance are shown in
[12] and [13, Chapter 12]. �

By replacing W (k) in (17) and the frequency weighting
ĈV (k) with Ŵ (k) and ĈW (k), respectively, we can formu-
late the frequency-domain identification criterion as

θ̂(i) = arg min
θ

1

N

N∑
k=1

∣∣∣|M (i−1)
1 (k, θ)|

∣∣∣2
F
, (20)

with M
(i−1)
1 =

[
ĈW (k)

1
2A(Ωk, θ

(i−1))
]−1

·[
A(Ωk, θ)Ŵ (k)−B(Ωk, θ)R(k)− C(Ωk, θ)

]
. (21)

Collecting all input/output data for all frequencies and the
frequency weighting in the regression matrix Q, and the
unknown parameters in the vector θ for each iteration,

M1 = Qθ. (22)

Due to the non-monicity of the polynomial matrix A(p) and
since the parameters of A(p) and B(p) might be partially
known, the resulting estimation is not a standard (weighted)
linear regression problem. Constraints have to be take
into account to warrant identifiability. Consequently, a con-
strained iterative weighted least squares (IWLS) optimization
using SK-iteration is executed, where the constraints include
the known parameters and the interconnection structure. The
solution for each iteration of (20) is then given by

θ̂ = arg min
θ
θHQHQθ, subject to Γθ = υ, (23)

where the constraint follows Condition 4 in Proposition 1.

Remark 5 The structure of the regression matrix Q, the
unknown parameter vector θ, selection matrix Γ and the
constant vector υ are described in [18]. �

The Lagrangian multiplier λ and Karush–Kuhn–Tucker
(KKT) conditions can be used to solve this optimization
problem, which in each iteration comes down to solving[

θ̂

λ̂

]
=

[
2QHQ ΓT

Γ O

]−1 [
O
υ

]
, (24)

where O is a zero-matrix with proper dimensions, and λ̂ are
the estimated Lagrange multipliers.

C. Step 3: Maximum likelihood estimation

Upon convergence of the SK-iteration in Step 2, a struc-
tured polynomial DCN model is obtained, for which consis-
tency and miniumm variance are not guaranteed. Therefore
the resulting model of Step 2, is used as an initial estimate
for a sample maximum likelihood estimator (SMLE) that
is asymptotically unbiased and asymptotically efficient [13],
and in this case is given by the non-convex optimization
problem

θ̂ = arg min
θ

1

N

N∑
k=1

||M2(k, θ)||2F , (25)

with
M2 = ĈW (k)−

1
2

[
Ŵ (k)−G(Ωk, θ)R(k)−T (Ωk, θ)

]
, (26)

G(Ωk, θ) = A(Ωk, θ)
−1B(Ωk, θ), (27)



T (Ωk, θ) = A(Ωk, θ)
−1C(Ωk, θ), (28)

where Ŵ (k) and ĈW (k) are obtained in (18) and (19),
respectively. Since we focus on the values of the components
in the physical network, keeping the network structure during
the SMLE is essential. The symmetric structure of A(p) is
incorporated in the parameterization and the known dynamic
B(p) is fixed. The SMLE cost is minimized using the solver
’lsqnonlin’ in Matlab.

D. Full network identification algorithm
The steps given above describe the frequency-domain

identification procedure, which can be summarized in the
following algorithm.

Algorithm 1 The frequency-domain identification algorithm
for diffusively coupled linear networks is given as:

1) Apply the LPM method to estimate the non-parametric
Ĝ with (10) and the noise covariance ĈV with (13).

2) Apply the input/output data criterion (20) with sample
mean (18) and covariance (19) leading to the IWLS
with constraint (23) to estimate the parameters θ̂ in a
structured polynomial model, which is solved by the
SK-iteration.

3) Use the result (24) as an initial estimate for the SMLE
(25) to obtain asymptotically unbiased and efficient
parameter estimates by an iterative non-convex con-
strained optimization algorithm. �

Remark 6 Achieving consistent estimates of DCNs using
this algorithm requires satisfying all conditions specified in
Proposition 1 for network identifiability. It is also necessary
that the true model is one of the candidate parametric models
in the model set (P0 ∈ M), and the system must be excited
at sufficient frequencies for data informativity [16]. �

IV. SIMULATION EXPERIMENTS
The following simulation examples serve to illustrate that

the component values of a full DCN can be consistently
estimated from only a single excitation signal with full nodes
measurement using Algorithm 1, in an In-Circuit Testing
application. Consider the 10-node RLC circuit as shown
in Fig. 1, where each j-th node, j = 1, . . . , 10, has the
following measurement components connected to the ground
node: Cj0 = 2 µF, Rj0 = 500 Ω, and Lj0 = 18 mH.
The coefficients of the components in the interconnections
between the nodes are given as θhcomp in Table II.

This 10-node RLC circuit can be expressed as a second-
order CT DCN model (details are shown in [18]). The
excitation signal of this model is chosen as the current and
the measured node signals are voltages, to maintain the
same structure as (1). The orders of the parametric model
are na = 2, nb = 1, and nc = 1. Here, the symmetric
A(p) parameters are given as ajj,0 = 1

Lj0
, ajj,1 = 1

Rj0
,

and ajj,2 = Cj0; and ajk,0 = − 1
Ljk

, ajk,1 = − 1
Rjk

, and
ajk,2 = −Cjk for j 6= k. The rest of the parameters in A(p)
are given as 0 for the absent connections. The parameters of
B(p) are given as bjk,1 = 1 for the k-th excitation entering
the j-th node, and the rest of the parameters in B(p) are 0.

TABLE I
EXPERIMENT NUMBERS WITH CORRESPONDING DATA LENGTHS N .

# 1 2 3 4 5
N 103 2 × 103 4 × 103 8 × 103 16 × 103

# 6 7 8 9 10
N 32 × 103 64 × 103 128 × 103 256 × 103 512 × 103

1 2 3 4 5 6 7 8 9 10

10
-8

10
-7

10
-6

10
-5

10
-4

Fig. 2. Boxplots of the RMSE of the coefficients of the components for
each experiment.

A. Consistent parameter estimation

The excitation signal r(t) is an independent zero-mean
white noise with variance σ2

r = 1 entering only at node
3. The noise signal e(t) is a normal distributed zero-mean
white noise with variance σ2

e = 1 entering all nodes. The
sampling frequency is set at 20 kHz to cover all the dynamics
of the components, and the identification frequency band
is set between fmin = 500 Hz and fmax = 4 kHz. The
constraints incorporate the known input matrix B(p) and the
known topology information indicated in the matrix A(p).

To show that the parameters can be consistently estimated
with a single excitation, we generated a set of experiments
with different data lengths N . The experiment numbers and
corresponding values of N are shown in Table I. Each exper-
iment includes 100 Monte Carlo (MC) runs with independent
excitation and noise signals.

The box plots of the relative mean squared error (RMSE)
of the coefficients of the components for each experiment
number are shown in Fig. 2. The relative mean squared error
of the coefficients of the components is given as

RMSE =
‖θ̂comp − θ0

comp‖22
‖θ0
comp‖22

, (29)

where θ̂comp and θ0
comp collect the estimated and actual com-

ponent values, respectively. The θ̂comp is uniquely recovered
from the estimation of the DCN parameters θ̂. In Fig. 2, it
can be seen that the RMSE decreases as N increases, which
supports the claim of consistent identification. When the data
length N tends to infinity, the estimated parameters converge
to the actual parameters.

B. Fault detection and diagnosis

The algorithm for estimating the DCN component values,
can be used to detect and diagnose the occurence of faults
in any (combination) of the different components in the
network. In this Section we will show an example where mul-
tiple dynamic faults and open circuits occur simultaneously
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Fig. 3. Relative parameters errors for the 10-node defect model.

in the 10-node RLC network. We consider faulty dynamics
in R13, R36, R89, and L25 and open circuits in R45 and
L56, leading to new actual values indicated by θ0

comp in
Table II, where the faulty components are indicated in red.
We keep the same excitation situation as before and increase
the noise power to σ2

e = 100 at all nodes. The data length
is N = 20000.

The relative parameter errors (RPEs) of the estimation
results are shown in Fig. 3. For each ungrounded component,
the actual coefficient value (θ0

comp) and the mean estimated
coefficient value for 50 MC (CT est) are shown in Table II.
It can be seen that all mean estimated values, including
the ones for the faulty components, are very close to the
actual values. Moreover, all RPEs stay between ±5% for
the healthy components as well as for the faulty compo-
nents (R13, R36, R45, R89, L25, and L56), as shown in
Fig. 3. Notice that components Idx 19 to 48, which are
the grounded components (arranged in order of Cj0, Rj0,
Lj0, j = 1, . . . , 10) show a higher variance compared to
the others. This occurs as the interconnected components
are represented twice in the model, resulting in the use
of more data to estimate these components than is used
for the grounded components. This experiment shows that
all components are identified correctly. By comparing the
identified results with the ideal healthy components, we can
detect the physical value changes of the components and
diagnose the faults. This shows that the algorithm can be
applied to FDD in complex physical networks.

V. CONCLUSIONS
We have introduced a frequency-domain identification

method for estimating continuous-time models of diffusively
coupled networks. A three-step frequency-domain identifica-
tion method has been developed that preserves the physical
network structure and is used to estimate the values of all
physical components in the network. The primary advantages
of this method include the direct identification of continuous-
time networks and the accurate recovery of the values of
physical components in the networks. A successful applica-
tion to fault detection and diagnosis in In-Circuit Testing in
a PCBA has been shown.

TABLE II
10-NODE DEFECT NETWORK COMPONENT VALUES.
Idx Comp θhcomp θ0comp CT est Unit

1 R13 100 200 200.06 Ω
2 R23 200 200 200.04 Ω
3 R34 150 150 149.98 Ω
4 R36 180 500 500.40 Ω
5 R45 350 Inf Inf Ω
6 R38 180 180 180.37 Ω
7 R56 160 160 160.15 Ω
8 R57 120 120 119.93 Ω
9 R89 160 500 500.49 Ω

10 R910 120 120 120.13 Ω
11 L19 5 5 5.00 mH
12 L29 3 3 3.00 mH
13 L23 10 10 10.00 mH
14 L25 15 1 1.00 mH
15 L34 12 12 12.00 mH
16 L45 20 20 20.00 mH
17 L56 13 Inf Inf mH
18 L89 13 13 13.00 mH
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