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THE HAMBO TRANSFORM: A SIGNAL AND SYSTEM
TRANSFORM INDUCED BY GENERALIZED ORTHONORMAL
BASIS FUNCTIONS
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Mechanical Engineering Systems and Control Group, Delft University of Technology,
Mekelweg 2, 2628 CD Delft, The Netherlands

Abstract. A signal and system transformation is analyzed that is induced by a re-
cently introduced generalized orthonormal basis for H;-systems and £3-signals. This
basis is very flexible and generalizes the pulse, Laguerre and Kautz bases. The corre-
sponding system and signal transformations generalize the Fourier and z-transforms;
interesting properties of the representations in the transform domain are shown. The
transformations are indispensable in the asymptotic analysis of related system iden-
tification algorithms, and provide powerful results in system approximation.

Keywords. Orthogonal basis functions; Laguerre functions; discrete-time systems;

Fourier transform; system approximation; network synthesis.

1. INTRODUCTION

The idea of decomposing representations of linear time-
invariant dynamical systems and related input/output
signals, e.g. with respect to their power density spectra,
in terms of orthogonal components other than the stan-
dard Fourier series, dates back to the work of Lee and
Wiener in the thirties, as reviewed in Lee (1960). La-
guerre functions have been very popular in this respect,
mainly because of the fact that their frequency response
is rational. In an attempt to find more general classes
of orthogonal basis functions with this same property,
Kautz (1954) formulated a general class of functions,
composed of damped exponentials, to be used for signal
decomposition.
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In the seventies and eighties, particularly Laguerre func-
tions were often applied in problems of network synthe-
sis, system approximation and identification (King and
Paraskevopoulos, 1979; Nurges 1987). In some cases a
system transformation in terms of the Laguerre basis
functions has been considered here. Later, in Wahlberg
(1991, 1994a,1994b) Laguerre functions and so-called
two-parameter Kautz functions have been used in the
identification of the expansion coefficients of approxi-
mate models by simple linear regression methods, while
system approximation properties are discussed in Wahl-
berg and Makili (1996).

Generalizing the basis functions, Heuberger (1991) has
developed a theory on the construction of orthogonal
basis functions, based on balanced realizations of inner
(all-pass) transfer functions, see Heuberger et al. (1995).
The construction of these functions generalizes the La-
guerre and two-parameter Kautz case. This development
has led to a generalization of the identification results
of Wahlberg, see Van den Hof et al. (1995). A closely re-
lated approach to incorporate general Kautz functions



into the identification framework is discussed in Ninness
and Gustafsson (1994) and Ninness et al. (1995).

Besides the use of these functions for identification pur-
poses, the basis functions of Heuberger et al. (1995) give
rise to a general theory on dynamical signals and sys-
tems transformations induced by these so-called Hambo
basis functions. Properties of these transformations have
been crucial in the development of the identification re-
sults in Van den Hof et al. (1995).

In this paper, the mentioned transform-theory will be
presented, and its relevance will be shown to a related
system approximation problem. For the proofs of all re-
sults the reader is referred to Heuberger and Van den
Hof (1995). Interesting results on system approximation
using the same basis functions are discussed in Oliveira
e Silva (1996).

The core of the paper is the layout of Figure 1 show-
ing the so called Hambo transformations for €3 signals
in the time and the frequency domain. In this figure ¢
and ¢ reflect the signal transform and its inverse; the re-
lated transform of dynamical systems is indicated by the
transform H and its inverse H-L. In this system trans-
form the ¢5-signal z is treated as the pulse response of
the dynamical system.

Fig. 1. Commuting diagram showing the Hambo-
transform and the Inverse Hambo-transform, de-
fined on ¢-signals.

2. THE HAMBO BASIS FUNCTION

For the construction of the basis functions the following
nesting property of balanced realizations of inner func-
tions is employed.

Proposition 2.1 (Roberts and Mullis, 1987; Heuberger
et al., 1995.) Let Gy be a square inner transfer function
with minimal balanced realization (Ay, B1,C1,D;) hav-
ing state dimension n, > 0. Then for any k > 1 the
realization (Ag, By, Cr, Dy) with

_| Ak—1 O _ | Bik-1
Ae = [Blck_1 Al] By = [BlDf‘l] )
Cy=[D{7'Cy Cioy] Di=Dy Dy (2)
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is a minimal balanced realization of G¥ with state di-
mension ny - k.

Given a balanced realization of G one can directly con-
struct a balanced realization of Gf for any k > 0 with
this recursive mechanism. By writing down the equa-
tion for the state trajectory related to the realization
(Ak, Bk, Cy, D):

Ti(t + 1) = Apai(t) + Bru(t); (3)

it follows from the structure of Ax and By that for any
input and initial state, zx(¢) can be written as

a) = | 420 ()
and thus
w(®) = [¢T0) 6Tt - 6T )" ()

The main result of concern is that, if in (3) u(t) = §(¢)
and z(0) = 0, the sequence of £3[1, co)-functions

{eiT “Br(t) izt - mpsk=1, 00

(6)

is an orthonormal basis for the Hilbert space ¢3[1, co).

As in the case of orthonormal basis functions based on
e.g. Laguerre and Kautz functions, the introduced ba-
sis incorporates dynamics, present in the inner function
Gy. As the McMillan degree of Gy is not limited, the
complexity of the dynamics, present in the basis, can be
arbitrary.

It is a particular choice to structure this basis in terms of
the n,-dimensional components ¢, (t). This is motivated
by the following shift structure:

Br+1(t) = Go(@) I, - Pr(t)
¢ (t)=A"'B

k=1,2,--- (7

(8)
where the shift operator ¢ operates on the time sequence
or, and ¢r(t) = 0 for t < 0. By z-transform it follows

that the sequence of Hy-functions determined by the
entries of

Vi(2) 1= du(t)z™" = (21 — A)T'BGF1(2) (9)

constitute an orthonormal basis for the Hilbert space of
strictly proper stable systems in Hs.

As a result, for any strictly proper system H(z) € H,
or signal y(¢) € £5[1, c0) there exist unique series expan-
sions:



.....
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1
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Fig. 2. Representation of /,-signal in terms of the ¢,
basis functions ¢y (t).

=Zmnm
t)—ZyT

Ly € R™™1, (10)

Yor(t)  Y(k) e R™*L (11)

The above construction is depicted in the network that
is sketched in Figure 2. In the network, the arrows de-
parting from midway block locations refer to balanced
state readout.

For specific choices of Gy(z) well known classical basis
functions can be generated. Gy(z) = z~! results in the
standard pulse basis Vi(z) = 2% and the first order in-

ner function Gy(z) = 1:__“; results in the Laguerre basis
Vi(z) =

V1-— a2 U-az) - . Similarly the two-parameter
Kautz functions orlgmdte from the choice of a second
order inner function.

The introduced basis induces a signal transform y — 7
with [V7(1) Y7(2) -] = [o(1) 0(2) -] where n(t) is
scalar valued. Before analyzing this basis and the corre-
sponding transform further, we will first discuss a dual
basis in £> that induces the corresponding inverse trans-
form n — y.

3. THE DUAL BASIS IN ¢,

A basis for £; that is dual to the basis presented in the
previous section, is given in the next proposition.

Proposition 3.1 Denote

Yr(t) = (k) fort,k=1,..,0 (12)
Y((t = Dmp +i):=eFu(t), i=1,---,np. (13)
de [Pl (1) ¥i(2) -] = [w(1) w(2) w(3) -]

Then the £y-signals vy constitute an orthonormal basis
for €2[1,00), which is dual to the basis in the previous
section, in the sense that for each y € £3[1,00) there is
a transform n € {21, 00) given by
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=Y y(k)n(t) (14)
k=1

For the original basis reflected by ¢ (t) we formulated
n (7,8) a nice shift structure of the basis functions. A
similar result for the dual basis is formulated next.

Proposition 3.2 Let the inner function Gy have a min-
imal balanced realization (A, B,C, D). Then (D,C, B, A)
is a minimal balanced realization of the ny x ny inner
function N(z) with McMillan degree equal to 1, where

N(z):= A+ B(z-D)~C (15)

Furthermore,
Yrt1(t) = N(q) - e(t) k=1,2,--- (16)
¥1(t) = BD'! (17)

where the shift operator q operates on the time sequence
i, and Yr(t) =0 for t <0.

The Proposition shows that the inner functions G4 and
N clearly play a dual role. They are simply related by
ordering the state space realizations reversely.

A similar duality can be considered between the sig-
nal sequences ¢ (t) and 1, (¢). Whereas ¢ (t) originates
from the balanced states of G’; under pulse excitation
and zero initial conditions, ¢x(¢) is the output of N*
under zero excitation and initial condition x(0) = ey,
where z(t) is the balanced state.

The construction of the £°[1, 00)-signals 1 (t) is de-
picted in the network of Figure 3. This network also
shows how the transform y — 7 as discussed in the
previous section can be calculated. In this respect the
network is dual to the network depicted in Figure 2.

Fig. 3. Network showing the construction of i (t) re-
lated to the dual basis, for calculation of the f-
signal transform y — 7, n(t) = Y ro, KTv(t),
where K = [y((k = )ny + 1) - - y(kns)].

Similar to (9) we will denote the z-transform of the func-
tions v (t) by



Wi(2) =D ye(t)z™ (18)
t=1

while as a direct result of Proposition 3.2 it holds that

Wi(z) = N*=1(2) - ( - D)"'B. (19)

It has to be noted that, whereas the scalar functions
{eTVi(2)} constitute an orthonormal basis, the dual
form of this basis is not given by {e7 Wi(z)}. This is due
to the specific relation (13) which shows that a reshuf-
fling of the components of ¥ (t) over time is required to
arrive at the orthonormal (dual) basis.

4. THE HAMBO SIGNAL TRANSFORM

The £5-basis functions presented in the previous sections

generate a signal transformation ¢»[1,00) — £2[1, 00).

However, it is particularly advantageous to consider a

closely related signal transformation that directly uses

the ny-dimensional signals ¢ (¢) and 4 (¢). This is mainly
due to the nice shift structures that these functions sat-

isfy, as formulated in the equations (7,8) and Proposi-

tion 3.2. This shift structure enables the construction of
a dynamical system transformation in terms of rational

functions, as will be discussed in section 5.

Definition 4.1 Let {@p(t)}r=1. ... be a sequence of
2501, 00)-functions, being generated by an inner func-
tion Gy with McMillan degree ny as presented in Section
2. Then we define the Hambo-transform as the mapping
H: 2 [1,00) — H3* ™™, determined by

H(z) := 2()\) = Z X(k)A* (20)
k=1
with the Hambo coeffictents X' (k), determined by
X(k) = ¢e(t)a” (2). (21)
t=1

Through this transformation, vector £,-signals are trans-
formed to matrix-valued sequences. This Hambo trans-
form can be considered as a generalization of the Fourier
or the z-transform, the latter of which for a signal z €
€3[1, 00) is given by x(z) = 3.2, z(t)z~". This z-trans-
form is generated by (20) employing the orthonormal
(pulse) basis, ¢ (t) = 6(k—t), corresponding to Gy(z) =
o1

Some basic properties of this Hambo transform are col-
lected in the following Proposition.

Proposition 4.2 The Hambo transform as defined in
Definition 4.1 satisfies
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(¢)
(b)

) = Wi\ (k).
k=1

E(A) = [z7(2)2)-12n(ny - T ® Wi (V)]
which for scalar x reduces to
E(A) = [z(2)2]:-1=n00) - Wi (A).

Apparently this signal transform can be obtained by a
simple variable-transformation z=! — N()). The Hambo
transform also yields an inverse transform, formulated
next.

Proposition 4.3 The inverse Hambo transform H™1 :
HPPX™ — 0 is defined by

H™'(@)(1) := Y X7 (k)pu(k) = a(t) (22)
k=1
with  X(k) = % / He)e*dw.  (23)

-

Dual to Proposition 4.2 the following results can be for-
mulated for the inverse transform.

Proposition 4.4 The Inverse Hambo transform as de-
fined above satisfies

2¥(z) =Y VI (2)X(k) = V{7 (2) - BN a-1=0,c)
k=1

The diagram shown in Figure 1 sketches the different
transformations that have been considered. The rela-
tions indicated by ¢ and v are defined in (21) and (22).
The relations indicated by H and H~1 are defined in
(20) and (22), whereas the direct relations between z(z)
and #(\) are provided in Propositions 4.2 and 4.4.

5. THE HAMBO SYSTEM TRANSFORM

The Hambo transform of £2-signals, as introduced in the
previous section, induces also a linear system transfor-
mation. This transformed system describes the relation-
ship between (transformed) input and output signals.

Proposition 5.1 Let P € Hy and let u,y € £y such
that y(t) = P(q)u(t). Consider the Hambo transform of
¢y signals as defined in definition 4.1. Then there exists
a P € HZ**™ satisfying

F(N) = P(A)a(A). (24)

The mapping T: Hay — H**™ defined by T(P) := P(\)
is referred to as the Hambo system-transform, and the



inverse mapping T-1 is denoted as the inverse Hambo
system-transform.
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Proposition 5.2 Let P be written as P(2) = Y g iz F.

Then the Hambo system-transform T(P) is determined
by

P())

(25)

P(z)|:-1=nin) = ZpkN(/\)k,

k=0

The Hambo-transform of any system P can be obtained
by a simple variable-transformation z~! = N(\).

In terms of the sequence of expansion coefficients, equa-
tion (24) shows that

Y(k) = P(q)U(k) forallk>1 (26)
where Y, U are £3*[1, 00) sequences induced by the Hambo
transforms of y,«, and the shift operator ¢ operates on
the sequence index k. This result generalizes the situa-
tion of a corresponding Laguerre transformation, where
it concerns the variable-transformation z = 2t% (see

1+ai
also Wahlberg, 1991).

The basis generating inner function Gy itself transforms
to a simple shift in the Hambo-domain:

Gy(\) = A7H,,

The complex (matrix) function P()) provides an alter-
native representation of the dynamical system P. Many
of the system theoretic properties of P(z) carry over to

P()). However there are also important differences that
will be clarified in the sequel.

Most properties of the Hambo system-transform can be
derived from state-space realizations of the transformed
system P. See Heuberger and Van den Hof (1995) for
explicit formula’s of this realization.

One of the main properties is that P and P have the
same McMillan degree. The poles and zeros of P and P
also have close relationships.

Proposition 5.3 Let P be the Hambo system-transform
of a scalar dynamicel system P € IRH;, induced by
the inner function G, and let Gy(z) have poles p;, j =
1,---ny. If P(2) has poles (zeros) in z = ay, then P())
has poles (zeros) in

As

(27)

Finally, we will specify how the inverse Hambo system
transform can be calculated.

Proposition 5.4 Let P € H}**™. Then the inverse
Hambo system-transform T_l(ls) is determined by

P(z) = z2V{T(2) - PA)|x-12c,(2) - (28)

B
1- DG(,(Z)

In correspondence with the forward transform, the in-
verse transform maps a system in H3**™ back to a
scalar system.

The Hambo system transform exhibits several more nice
properties, as e.g. invariance properties of Hankel singu-
lar values and several norms as the H,,-norm and the
Ha-norm {Heuberger, 1991).

6. HAMBO TRANSFORM IN SYSTEM
APPROXIMATION

The most straightforward use of the signal and system
transformations discussed in this paper, is in the area
of system approximation. Suppose we have been given a
scalar stable and strictly proper dynamical system P(z),
then we can represent this system in the series expan-
sion:

P(z) =Y L{Vi(2). (29)
k=1

For an unknown system P(z}, we can also identify the
system based on a parametrization in terms of the se-
quence {L;}g=1.. as is analyzed in Van den Hof et al.
(1995).

For an appropriate choice of the inner function G, the
basis functions Vi {z) should match the most dominant
components of P(z) such that the series expansion will
have a high rate of convergence. In other words: for a
given approximate model

n

Pa(2) =Y LTVi(2)

k=1

(30)

the approximation error ||P — P,|| (in some norm), will
be dependent on the choice of Vi (z).

We will now show that we can explicitly relate the rate
of convergence of this series expansion to the dynamics
that is present in P and G, by using the transform
results discussed previously.

If p(t) is the pulse response related to P(z), then p(t) =
> re; LT ¢k (t), which implies with the signal transform
definitions that

BA) = Lex7*.
k=1



In other words, the decay rate of the sequence {Lg}=1,...
is governed by the dynamics that is present in H(}).

P(/\)% and the poles of p
are given by the poles of P.

Proposition 6.1 p(A) =

This result leads to the following Proposition.

Proposition 6.2 Let P have poles a;, ¢ = 1,--+,n,,
and let Gy(2) have poles p,, j = 1,---ny. Denote
ny
- -1
= max]| [[{ | = maxicuerl o

Then there exists a constant ¢ € IR such that for all
C>u
Cn+1

If P(z) has only poles with multiplicity 1, a more explicit
bound can be calculated as is also shown in Ninness et al.
(1995). In this case P(z) can be written in the fractional
expansion

|P~Pallz<c- (32)

T

>

=1

ks
zZ —

P(z) =
and it can be shown that such a system obeys

P - P =3 BB Gy ey

=1 -
1P - Palla < Z ARl (34)
1— ol
These results show that an appropriate choice of basis,
can drastically improve the rate of convergence in the se-
ries expansion, and thus enabling more accurate system
approximations with fewer terms.

7. CONCLUSIONS

We have analyzed a signals and systems transform that
is induced by a very general class of orthogonal func-
tions. The basis functions are induced by the balanced
states of scalar inner (stable all-pass) functions, and gen-
eralize the classical Laguerre and Kautz functions. The
induced signals and systems transforms generalize the
Fourier and z-transform to a multidimensional represen-
tation. The benefit of the transformations in a related
system approximation problem has been shown.
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