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Abstract: This paper uses prediction error identification to distinguish control-relevant system
changes in closed-loop operation from variations in disturbance characteristics. The approach
consists of a hypothesis test to verify whether an identified model of the true system lies in
a set containing all models that exhibit adequate closed-loop performance. To increase the
detection probability, i.e. the probability of choosing the correct hypothesis, experiment design
is performed to devise an excitation signal for closed-loop identification of the system dynamics.
For a given identification cost, this allows us to maximize the probability that an identified
model of the system lies in the performance-related region of interest in accordance with the
hypothesis test and, therefore, decrease the probability of opting for an erroneous hypothesis.

1. INTRODUCTION

Performance assessment of controllers is of paramount im-
portance in practical control applications. Various changes
often occur in system dynamics over time, e.g. changes in
equipment or operating conditions. Such variations typi-
cally lead to deterioration of the existing controller which
originally performed satisfactorily at the commissioning
stage. Performance monitoring and diagnosis is therefore
a crucial step in maintenance of control systems to restore
the closed-loop performance of existing controllers.

The problem of performance monitoring from closed-loop
data has received considerable attention in the litera-
ture. The research on performance monitoring is primarily
based on the performance benchmark of a minimum vari-
ance controller [Harris, 1989]; see, e.g., [Qin, 1998] for an
extensive survey. On the other hand, very few researchers
have explored the performance diagnostics aspects in
maintenance of control systems. Performance diagnostic
tools should allow us to assess whether an observed de-
viation from the nominal performance is due to a system
change and/or variations in disturbance characteristics.

The foundations of research on performance diagnosis have
been laid by Basseville and her coworkers who proposed a
systematic approach for on-line fault detection and isola-
tion; see [Basseville, 1998] and the references therein. The
so-called local approach transforms the detection problems
related to a parameterized stochastic process into the
universal problem of monitoring the mean of a Gaussian
vector. Therefore, the local approach is particularly suited
to detect any changes in the system under study. In perfor-
mance assessment of most control applications, we however

⋆ The research leading to these results has received funding from the
European Union’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement 257059 (www.fp7-autoprofit.eu).

aim to verify whether an observed closed-loop performance
drop is due to control-relevant system changes. This is
not necessarily the same as on-line model validation and
detection of any changes in the system dynamics.

Recently, Mesbah et al. [2011] have proposed a novel
methodology for closed-loop performance diagnosis using
prediction error identification. They exploit hypothesis
testing to distinguish control-relevant system changes in
closed-loop operation from variations in disturbance char-
acteristics. The hypothesis testing framework is a classical
statistical methodology to make decisions between contra-
dictory hypotheses by comparing their probability of oc-
currence [Kay, 1998]. The proposed decision rule consists

of verifying whether an identified model G(z, θ̂N ) of the
true system G0(z) lies in a set Dadm containing all mod-
els that exhibit satisfactory closed-loop performance. The
closed-loop performance at commissioning is deemed to be
satisfactory when the system disturbances are adequately
rejected, i.e. system inputs and outputs have a sufficiently
small variance. Clearly when the identified model lies in
Dadm, it can be decided that the observed performance
degradation arises from variations in the disturbance char-
acteristics. On the contrary, the deviation from nominal
performance is due to control-relevant system changes in

case that G(z, θ̂N ) /∈ Dadm.

A similar approach as in [Mesbah et al., 2011] has been
utilized by [Tyler and Morari, 1996] for the problem of
performance monitoring using routine closed-loop operat-
ing data. They defined a complicated hypothesis test in
terms of constraints on the impulse response coefficients
of the closed-loop transfer function. Based on the closed-
loop performance criterion, the performance assessment
problem was formulated as a generalized ratio test that in-
volved identifying the true system. Gustafsson and Graebe
[1998] have also applied the hypothesis testing framework
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to examine whether an observed performance drop results
from a system change that has deteriorated the closed-
loop stability margins. They designed a standard CUSUM
change detector on the basis of a closed-loop stability
criterion. The specific definition of the closed-loop perfor-
mance measure however restricts the applicability of the
methodology.

This work aims to explore the use of experiment design
as a means to increase the detection probability in the
closed-loop performance diagnosis methodology presented
in [Mesbah et al., 2011]. The decision rule of the diagnosis
methodology may lead to erroneous decisions as it relies on

an identified model G(z, θ̂N ) of the true system. We exploit
experiment design [Gevers, 2005] to devise the excitation
signal used for identifying the system dynamics. For a
prespecified closed-loop identification cost, the experiment
design problem is intended to maximize the probability
that an identified model of the true system lies in the
performance-related region of interest, i.e. either inside or
outside Dadm depending on the cause of the performance
drop. A proper design of the excitation signal will therefore
allow us to increase the probability of opting for the
correct decision and, consequently, increase the detection
probability.

2. PERFORMANCE DIAGNOSIS

The performance diagnosis methodology is intended to de-
tect whether an observed closed-loop performance degra-
dation, i.e. an increase in the variance of system inputs and
outputs, originates from control-relevant system changes
or from variations in disturbance characteristics. We re-
strict our attention to stable linear time-invariant single in-
put single output systems. The true system is represented
as follows:

y(t) = G(z, θ0)
︸ ︷︷ ︸

G0(z)

u(t) + H(z, θ0)e(t)
︸ ︷︷ ︸

v(t)

, (1)

where θ0 ∈ Rk is an unknown parameter vector; e(t) is a
white noise signal with variance σ2

e ; G(z, θ0) and H(z, θ0)
are stable discrete-time transfer functions. Furthermore,
H(z, θ0) is assumed to be monic and minimum-phase.

We analyze the performance of the closed-loop system
shown in Fig. 1; r(t) represents an excitation signal used
for identification. In this work, the performance of a stable
closed-loop system made up of a system G(z, θ) and an
existing controller C(z) is expressed as:

J(G,C,Wl,Wr) = sup
ω

J̄(ω,G,C,Wl,Wr) (2)

with

C G0
+ ++

-

0

r(t)

u(t)

v(t)

y(t)

Fig. 1. The closed-loop system [C G0].
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F (G,C) ,





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G
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C

1 + GC

1

1 + GC




 , (3)

where σ̄(A) denotes the largest singular value of A; Wl(z)
and Wr(z) are chosen diagonal performance weighting fil-
ters. In fact, the performance measure of Eq. (2) quantifies
the ability of the loop [C G] in coping with some system
disturbances. The performance level is satisfactory when
J(G,C,Wl,Wr) ≤ 1. Note that the performance filters can
be selected such that the performance measure is stated
as a weighted function of C

1+GC
or 1

1+GC
. This allows us

to relate the disturbance v(t) to the system input u(t) and
system output y(t), respectively.

The hypothesis test of the performance diagnosis method-
ology is based on the following definitions.

Definition 1: Given the existing controller C(z) in the
closed-loop system of Fig. 1, the region Dadm is the set of
all transfer functions G(z) that are stabilized by C(z) and
achieve the nominal performance J(G,C,Wl,Wr) ≤ 1.

Definition 2: The set VJ contains the power spectrum
Φv(ω) of all disturbances v(t) which are sufficiently re-
jected by all loops [C G] that satisfy J(G,C,Wl,Wr) ≤ 1.

It follows from the aforementioned Definitions that the
performance of a closed-loop system [C G] cannot be
described merely based on the performance measure
J(G,C,Wl,Wr) as the performance is also dependent on
the disturbance spectrum Φv(ω). Therefore, the closed-
loop performance of the system is deemed to be satisfac-
tory when G(z, θ) ∈ Dadm and Φv(ω) ∈ VJ .

At the commissioning stage, the controller C(z) has been
constructed such that it stabilizes G0(z) and achieves
the nominal performance level, i.e. J(G,C,Wl,Wr) ≤ 1
with G = G0(z), while the system disturbances are
adequately rejected. This implies that the loop [C G0] at
commissioning ensures G0(z) ∈ Dadm and Φv(ω) ∈ VJ .

Nonetheless, various changes typically occur in the system
G0(z) and/or the disturbance spectrum Φν(ω) that may
lead to increased variance of input and output signals. In
the event of such a closed-loop performance degradation,
one of the following scenarios holds:

(1) the system G0(z) remains in Dadm, suggesting that
the disturbance spectrum Φv(ω) no longer lies in VJ ;

(2) the system G0(z) moves outside Dadm.

Hence, the hypothesis test of the detection problem under
study is stated as:

H0 : G0(z) ∈ Dadm

H1 : G0(z) /∈ Dadm.
(4)

Further details of the performance diagnosis methodology
can be found in [Mesbah et al., 2011].

Remark 1: In certain practical control applications, the
cause of an observed performance drop can be readily
detected on the basis of expert knowledge on the system.
In such cases, the choice of the true hypothesis is straight-
forward.
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3. DECISION RULE AND EXPERIMENT DESIGN

3.1 Decision Rule

To apply the hypothesis test given in Eq. (4), we should
identify the unknown true system G0(z) in closed-loop
operation with the existing controller C(z). In Fig. 1,
the signal r(t) is zero in normal operation but can be
used to excite the system for a closed-loop identifica-
tion experiment. By applying an excitation signal r(t)
for (t = 0, . . . , N − 1) to the closed-loop system and
measuring signals {u(t), y(t) | t = 0, . . . , N − 1}, a model

{G(z, θ̂N ),H(z, θ̂N )} of the true system can be identi-
fied using prediction error identification. We shall assume
throughout this paper that a full order model structure
can be constructed such that θ0 is the only value of the
parameter vector for which {G(z, θ),H(z, θ)} represents
the true system. The identified parameter vector is defined
as:

θ̂N = arg min
θ

1

N

N−1∑

t=0

ǫ2(t, θ), (5)

where ǫ(t, θ) = H(z, θ)−1(y(t) − G(z, θ)u(t)). Note that
ǫ(t, θ) depends on the excitation signal r(t) via the mea-
sured signals {u(t), y(t)}, i.e.

y(t) = S0v(t) + G0S0r(t)
︸ ︷︷ ︸

yr(t)

(6)

u(t) = −CS0v(t) + S0r(t)
︸ ︷︷ ︸

ur(t)

(7)

with S0 being the sensitivity function. Assuming that
the closed-loop identification experiment is sufficiently in-

formative, the identified parameter vector θ̂N is asymp-
totically normally distributed around the true parameter

vector θ0, i.e. θ̂N ∼ N (θ0, Pθ) with

Pθ =
σ2

e

N

(

E

[(∂ǫ(t, θ)

∂θ
|θ0

)(∂ǫ(t, θ)

∂θ
|θ0

)T
])−1

(8)

being a strictly positive definite matrix that can be es-

timated from θ̂N and the measured signals {u(t), y(t)}
[Ljung, 1999].

Once a model G(z, θ̂N ) of the true system is identified, we
can utilize the hypothesis test of Eq. (4) to detect the cause
of the closed-loop performance degradation. The decision
rule that allows us to decide between H0 and H1 is stated
as:

G(z, θ̂N ) ∈ Dadm ⇒ choose H0

G(z, θ̂N ) /∈ Dadm ⇒ choose H1.
(9)

The above decision rule may however lead to erroneous

decisions since G(z, θ̂N ) is an estimate of the true system
G0(z). For instance, there is a risk that we choose H0,

whereas the identified model G(z, θ̂N ) ∈ Dadm has been
generated by a true system outside Dadm. Clearly this
is an erroneous decision as the deviation from nominal
performance originates from changes in the system dy-
namics, while the decision rule attributes the performance
drop to variations in Φν(ω). On the contrary, the alter-
native hypothesis H1 may be opted for erroneously when

G(z, θ̂N ) /∈ Dadm has been generated by G0(z) ∈ Dadm.
This is in effect a wrong decision as the performance

degradation does not result from changes in the system
dynamics.

3.2 Input Design

In this work, we aim to maximize the probability of making
a correct decision according to the decision rule of Eq. (9)
for a predetermined closed-loop identification cost. This
is done by designing the power spectrum Φr(ω) of the
excitation signal r(t) to maximize the probability that an

identified model G(z, θ̂N ) of the true system G0(z) lies in
the region of interest, i.e. either inside or outside Dadm,
and, consequently, maximize the detection probability of
the decision rule. We design the power spectrum Φr(ω)
for a fixed experiment duration N and an admissible
identification cost β to keep ur(t) and yr(t) sufficiently
small. The cost of the closed-loop identification experiment
is expressed as:

Jr = βy

( 1

2π

∫ π

−π

Φyr
(ω)dω

)

+ βu

( 1

2π

∫ π

−π

Φur
(ω)dω

)

,

(10)
where Φyr

(ω) and Φur
(ω) are the power spectra of the dis-

turbance signals yr(t) and ur(t), respectively; see Eqs. (6)-
(7). In Eq. (10), βy and βu are some arbitrarily chosen
scalars. The user specified admissible experimentation cost
allows us to limit the perturbations caused by the excita-
tion signal r(t) during an identification experiment.

We restrict our attention to excitation signals whose power
spectrum Φr(ω) can be defined as:

Φr(ω) = Rr(0) + 2

m∑

i=1

Rr(i)cos(iω) ≥ 0 ∀ω, (11)

where m is a positive integer. The parameters Rr(i) with
(i = 0, . . . ,m) can be regarded as the auto-correlation
sequence of a signal which has been generated by a
white noise signal passing through an FIR filter of length
m + 1. The spectrum given in Eq. (11) allows us to
ensure that the closed-loop identification experiment is
sufficiently informative and, therefore, the assumption

θ̂N ∼ N (θ0, Pθ) holds.

In the sequel, the problem of experiment design is ad-
dressed for each of the hypotheses stated in the decision
rule. Note that the choice of the experiment design prob-
lem to be solved depends on the unknown system dynamics
G0(z).

Situation 1: When G0(z) lies in Dadm, the power spec-
trum Φr(ω) of the excitation signal is designed such that

it maximizes the probability that G(z, θ̂N ) ∈ Dadm. Under
the null hypothesis H0, the experiment design problem is
therefore formulated as:

max
Rr(i)

Pr
(

G(z, θ̂N ) ∈ Dadm

)

s.t.: Jr < β
(12)

with Rr(i) for (i = 0, . . . ,m) being the coefficients of the
power spectrum Φr(ω) defined in Eq. (11).

Situation 2: If G0(z) does not lie in Dadm, the experiment
design problem aims to maximize the probability that

an identified model G(z, θ̂N ) of the true system will lie
outside the set Dadm. Hence, in the case of the alternative

16th IFAC Symposium on System Identification
Brussels, Belgium. July 11-13, 2012

1343



hypothesis H1 the experiment design problem is expressed
as:

max
Rr(i)

Pr
(

G(z, θ̂N ) /∈ Dadm

)

s.t.: Jr < β.
(13)

3.3 The Choice of the Initial Model

As in every experiment design problem, design of the
power spectrum Φr(ω) requires the knowledge of the true
system G0(z) to be identified. The fact that G0(z) is not
known in practice poses an additional difficulty in the
experiment design problems under study. This is due to
the fact that the choice of the experiment design problem,
i.e. Situation 1 or 2, depends on the selected hypothesis in
the decision rule of Eq. (9) and, consequently, on G0(z).
Hence, this is a ‘chicken and egg’ problem where the
knowledge of the unknown G0(z) determines the cause of
the performance drop and, thereof, how we can maximize
the detection probability by a proper design of Φr(ω).

There are various ways to alleviate the ‘chicken and
egg’ problem. The most common procedure is to perform
closed-loop identification with a white noise excitation sig-
nal to arrive at an initial model estimate using prediction
error identification, i.e. Eq. (5). The initial model estimate
will subsequently be exploited to conduct the experiment
design according to either Situation 1 or 2 in order to
maximize the detection probability of the decision rule. Al-
ternatively, the Bayesian approach to system identification
[Eykhoff, 1974] can be applied to utilize prior knowledge
of the system in combination with the routine closed-loop
data to identify an initial model of the true system.

We propose another approach to circumvent the ‘chicken
and egg’ problem. In the two scenario approach, we con-
sider two hypothetical scenarios:

(1) the performance drop results only from the changes in
disturbance characteristics, while the true system dy-
namics remain identical to that of the commissioning,
i.e. G0(z) = G(z, θcom);

(2) the performance drop results only from the changes
in the true system dynamics, while the disturbance
characteristics remain identical to that of the com-
missioning, i.e. H0(z) = H(z, θcom) and σ2

e is intact.

It is self-evident that the above scenarios correspond to
the null hypothesis H0 and the alternative hypothesis
H1, respectively. Under scenario 1 the model used to
construct the controller at commissioning can be utilized
to describe the true system dynamics, whereas under
scenario 2 an estimate of the true system dynamics G0(z)
can be obtained from routine closed-loop data with a
reasonable accuracy. In the two scenario approach, these
models are exploited as an initial estimate of G0(z) to
perform experiment design according to Situations 1 and 2.
The latter experiment design problems in fact correspond
to two extreme cases, namely when the performance drop
is only due to changes in disturbance characteristics and
when it only arises from changes in system dynamics.

3.4 Approximation of the Experiment Design Problems

Numerical solution of the above discussed experiment
design problems is cumbersome. Suppose that we can

(a) H0 (b) H1

Fig. 2. Approximation of the experiment design problems
by using the confidence set D(θ0, Pθ,X ).

construct a confidence set D(θ0, Pθ,X ) centered around

G0(z) on the basis of θ̂N ∼ N (θ0, Pθ). The problem of

maximizing the probability that G(z, θ̂N ) lies in a certain
region is then approximated by maximizing the probability
associated with the size of the confidence set D(θ0, Pθ,X )
within the region of interest, i.e. the region inside Dadm in
H0 or the region outside Dadm in H1. This is illustrated
in Fig. 2. The set D(θ0, Pθ,X ) contains any identified

model G(z, θ̂N ) of the true system G0(z) at a prespecified
probability level α [Gevers, 2005]:

D(θ0, Pθ,X ) =

{

G(z, θ̂N ) | θ̂N ∈ U, (14)

U = {θ̂N | (θ̂N − θ0)
T P−1

θ (θ̂N − θ0) < X}

}

where X is a real constant such that

Pr
(

χ2(k) < X
)

= α (15)

with χ2(k) being a chi-square distribution with k degrees
of freedom.

We use the set D(θ0, Pθ,X ) to recast the experiment design
problems of Eqs (12) and (13) as:

max
X ,Rr(i)

X

s.t.: D(θ0, Pθ,X ) ⊆ Dadm

Jr < β

(16)

and
max

X ,Rr(i)
X

s.t.: D(θ0, Pθ,X ) ⊆ CDadm

Jr < β,

(17)

respectively, where CDadm
is the set containing all systems

that do not belong to Dadm. Note that the covariance
matrix Pθ is dependent on the power spectrum of the ex-
citation signal r(t) via Eqs. (6)-(8). Therefore, the largest
set D(θ0, Pθ,X ) within the performance-related region of
interest can be obtained by designing the power spectrum
Φr(ω) to dictate the orientation of the ellipsoidal region
D(θ0, Pθ,X ) via Pθ and, subsequently, by maximizing the
real constant X which governs the size of the ellipsoidal
region. Clearly, the detection probability will be increased
by maximizing the ellipsoidal set D(θ0, Pθ,X ) in the region
inside Dadm and in the region outside Dadm when the
hypothesis H0 and H1 are chosen, respectively; see Fig. 2.

The performance constraint D(θ0, Pθ,X ) ⊆ Dadm in

Eq. (16) requires that J̄(ω,G,C,Wl,Wr) ≤ 1 ∀ G(z, θ̂N ) ∈
D(θ0, Pθ,X ) at all frequencies. It has been demonstrated in
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[Bombois et al., 2006] that such performance requirement
can be stated as an LMI expression, linear in P−1

θ and X ,
at one particular frequency ω. In addition, Jr is shown to
be an LMI expression. The experiment design problem of
Eq. (16) can therefore be recast as an LMI optimization
problem in which the performance constraint has to be
computed at all frequencies. Note that in practice we
approximate the frequency domain by a finite frequency
grid in order to evaluate the LMI constraints at each
frequency ω.

D(θ0, Pθ,X ) ⊆ CDadm
implies that there exists certain fre-

quencies ω∗ where J̄(ω∗, G,C,Wl,Wr) > 1 ∃ G(z, θ̂N ) ∈
D(θ0, Pθ,X ). As in the previous case, the latter perfor-
mance constraint can be written as an LMI expression
at each frequency [Mesbah et al., 2011]. To solve the
experiment design problem of Eq. (17), we first perform
the following LMI optimization at each frequency ω∗ for
which J̄(ω∗, G0, C,Wl,Wr) > 1:

X ∗
opt(ω

∗) = arg max
X ,Rr(i)

X (18)

s.t.: J̄(ω∗, G,C,Wl,Wr) > 1 ∀ G(z,θ̂N )∈D(θ0,Pθ,X )

Jr < β.

The optimum spectrum of the excitation signal will then
be the Φr(ω) that results in the maximum X ∗

opt(ω
∗) over

all frequencies ω∗.

4. NUMERICAL ILLUSTRATIONS

The performance diagnosis methodology is applied to a
simulation case study. We consider the following Box-
Jenkins true system: y(t) = G0(z)u(t) + H0(z)e(t) where
G0(z) = θbz

−1/(1 + θfz−1) and H0(z) = 1 + θcz
−1;

θ0 = (θb θc θf )T and e(t) are the true parameter vector
and a realization of a white noise process with variance
σe,0, respectively. The control performance measure of
interest is related to the sensitivity function. The per-
formance weighting filters of Eq. (3) are therefore chosen
as Wl(z) = diag(0,W (z)) and Wr(z) = diag(0, 1) with
W (z) = (0.52 − 0.46z−1)/(1 − 0.99z−1). The true system
G0(z) is in closed-loop operation with a H∞-controller. At
commissioning, the controller has been constructed based
on a Box-Jenkins model with θcom = (3.6 − 0.9 − 0.9)T

and σe,com = 1.0. Note that the nominal performance level
is initially satisfied. The variance of the system output y(t)
is originally 0.73. In the sequel, we consider two scenarios
to investigate the extent to which the detection probability
can be increased by designing the power spectrum Φr(ω).
To illustrate the benefits of experiment design regardless of
the ‘chicken and egg’ problem, it is assumed that the true
system G0(z) is known. We therefore know a priori which
experiment design problem to solve. In both scenarios,
the experiment duration N and the admissible closed-loop
identification cost β are 500 and 0.15, respectively.

Scenario 1: We alter the disturbance characteristics
by varying the noise transfer function H0(z) and the
variance of the white noise signal e(t) with respect to the
commissioning stage, i.e. θ0 = (3.6 − 0.05 − 0.9)T and
σe,0 = 5.0. This leads to a drastic change in the variance
of the system output, i.e. 7.26.

1 2 3 4 5 6 7
−0.98

−0.96

−0.94

−0.92

−0.9

−0.88

−0.86

−0.84

−0.82

−0.8

−0.78

θb

θ
f

 

 

U(α = 68.15%)

θ ∈ Dadm

θ /∈ Dadm

θ0

(a) Φr(ω) is designed for m = 0, i.e. r(t) is a white noise signal

1 2 3 4 5 6 7
−0.98

−0.96

−0.94

−0.92

−0.9

−0.88

−0.86

−0.84

−0.82

−0.8

−0.78

θb

θ
f

 

 

U(α = 90.18%)

θ ∈ Dadm

θ /∈ Dadm

θ0

(b) Φr(ω) is designed for m = 35

Fig. 3. Scenario 1: G(z, θ̂N ) ∈ Dadm.

Knowing that G0(z) ∈ Dadm, we design the excitation
signal r(t) according to the experiment design problem of
Eq. (16) for the null hypothesis H0. Initially, the excitation
signal is chosen to be a white noise signal whose variance
is determined by solving Eq. (16), i.e. m = 0 in the power
spectrum Φr(ω) given in Eq. (11). Experiment design
with the white noise signal reveals that the probability
associated with the ellipsoidal confidence set D(θ0, Pθ,X )
centered around the true system G0(z) is 68.15%. The
latter probability indicates that at least 68.15% of the
models identified using the white noise excitation signal
are within the set Dadm and, therefore, will lead to the
choice of the null hypothesis H0 in the decision rule. This
suggests that the detection probability is at least 68.15%.
To verify the results of experiment design, we perform
a Monte Carlo simulation to identify the true system
dynamics 500 times by applying the designed white noise
excitation signal and measuring the signals {u(t), y(t)}.
Fig. 3(a) depicts the identified parameters θ = (θb θf )T in
the Monte Carlo simulation. The Monte Carlo simulation
indicates that about 81% of the identified models G(z, θ̂N )
lie in the set Dadm.

We now design the spectrum Φr(ω) of the excitation
signal for m = 35, implying that the designed r(t) is
no longer a white noise signal. For the same admissible
identification cost, i.e. β = 0.15, the probability associ-
ated with the confidence set D(θ0, Pθ,X ) is 90.18%, i.e.
the least detection probability. By comparing the latter
detection probability with that achieved using the white
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Fig. 4. Scenario 2: G(z, θ̂N ) /∈ Dadm.

noise excitation signal, i.e. 68.15%, we clearly observe
that the probability of choosing the correct hypothesis
can be significantly increased through a proper design of
the excitation signal r(t). The results of the Monte Carlo
simulation are illustrated in Fig. 3(b). It follows that over

91% of the identified models G(z, θ̂N ) lie in the set Dadm.
This is also larger than the probability 81% obtained with
the white noise signal.

Scenario 2: We induce changes in the system dynamics
with respect to commissioning by defining the parameter
vector θ0 as (2.3 − 0.9 − 0.9)T . It is evident that the
disturbance characteristics remain intact in this case. The
change in system dynamics results in a slight variation in
the variance of the output signal y(t).

Like in Scenario 1, we assume that the true system G0(z)
is known. It follows from the fact that G0(z) /∈ Dadm

we should design the excitation signal r(t) such that the

probability that the identified model G(z, θ̂N ) lies outside
Dadm is maximized, i.e. Eq. (17). It turns out that the
least detection probability achieved with the white noise
signal is 30.94%, i.e. the probability associated with the
elliposoidal set D(θ0, Pθ,X ). A Monte Carlo simulation
is performed to identify the true system dynamics 500
times by means of the white noise excitation signal. The
results of the Monte Carlo simulation are depicted in
Fig. 4(a). This reveals that approximatly 70% of the
identified models lie outside Dadm, leading to the choice
of the alternative hypothesis H1. On the other hand, by
designing the excitation signal r(t) with m = 35 we can

increase the least detection probability to 81.12%. This is a
drastic improvement with respect to the white noise case.
Fig. 4(b) indicates that about 84% of the models identified
with the designed excitation signal are outside Dadm.

5. CONCLUSIONS

A methodology has been presented to address the problem
of closed-loop performance degradation using prediction
error identification. The approach exploits the statisti-
cal hypothesis testing framework to detect whether an
observed performance drop results from changes in the
system dynamics or is due to variations in the disturbance
characteristics. This is performed by examining if an iden-
tified model of the true system lies in a set which contains
all models leading to satisfactory closed-loop performance
with the existing controller. To increase the detection
probability, we design the excitation signal used for system
identification according to the chosen hypothesis in order
to maximize the probability that the identified model lies
in the region of interest. The simulation studies show that
the detection probability can be significantly increased by
a proper design of the excitation signal for a prespecified
closed-loop identification cost.

In future, we will investigate various approaches to address
the ‘chicken and egg’ problem of determining an initial
model estimate for experiment design. In addition, the
work will be extended for closed-loop performance diag-
nosis of model predictive controllers.
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