
Systems & Control Letters 193 (2024) 105937 

A
0

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

Frequency domain identification of passive local modules in linear dynamic
networks✩

Lucas F.M. Rodrigues a,∗, Gustavo H.C. Oliveira a, Lucas P.R.K. Ihlenfeld b, Ricardo Schumacher a,
Paul M.J. Van den Hof c

a Department of Electrical Engineering, Federal University of Paraná, Curitiba/PR, Brazil
b Department of Electrical Engineering, Federal Technological University of Paraná, Curitiba/PR, Brazil
c Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands

A R T I C L E I N F O

Keywords:
Dynamic networks
System identification
Frequency-domain
Vector fitting
Passivity
Positive-real lemma
Convex optimization

A B S T R A C T

We develop a novel frequency-domain approach to address the important open issue of estimating passive local
modules within dynamic networks. The method applies an approach based on two stages, a non-parametric
and a parametric one. The parametric stage is an extension of the vector fitting technique that incorporates
energy consistency conditions as a fundamental component of the identification procedure, forming a path of
the passive model in the Sanathanan–Koerner iterations. The approach includes a formulation via linear matrix
inequalities to enforce energy-balance conditions resulting in a convex optimization problem. The approach
is practical even under weak assumptions on noise, enabling real-world applications. Numerical simulations
illustrate the potential of the developed method to effectively estimate local passive modules in dynamic
networks.
1. Introduction

Increasing complexity and interconnectivity of systems is an evident
trend in many domains. Autonomous driving systems and decentralized
control systems serve as illustrative examples, which rely on complex
networks of sensors, processors and actuators that act concertedly to
control and respond to changing conditions. A distinguishing feature
of these systems is that they form dynamic networks which are dynam-
ical systems intricately interconnected. In addition, these structured
interconnections are driven by and subjected to exogenous excitations
and disturbances. As in [1], dynamic networks can be defined as col-
lection of internal variables mutually and dynamically related (named
modules) in a network.

While identifying isolated systems has become mainstream within
the system identification community, the identification of modules
intricately interconnected remains a challenging problem given the
presence of highly correlated signals that affect the measurements [2,
3]. The increased complexity of dynamic networks renders impractical
traditional methods for obtaining a single model to represent local
module inside a network.

Identification of dynamic networks is usually categorized into full
network identification and local network identification, see [1]. In
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any case, network topology is assumed known, i.e., all interconnec-
tions between modules are given as problem data. While the full
network identification strategy focuses on obtaining the overall dy-
namic behavior of the system, local identification strategy focuses
on estimating only local dynamics, e.g. [1]. The problem of network
topology identification has become a separate research area.

Local identification of dynamic networks entails obtaining a con-
sistent estimate of (one or more) target modules. It can be achieved
by adjusting existing closed-loop methods [1,2,4,5]. A description on
how to adjust Predictor Error Method (PEM) to suit the needs of
dynamic networks can be found in [1,2]. To give an instance of such
adjustments, direct methods for module identification modify a one-
step ahead predictor to identify modules in networks whereas indirect
two-stages methods decorrelate signals before running a predictor [6].

Passivity of systems and networks is a fundamental property which
may be defined in terms of energy dissipation and transformation. A
physical system is denoted as passive when it is unable to generate
energy [7]. Passive modeling has become pervasive across a number
of research areas from network [8] to control [9] systems.

An important open issue within local network identification is the
requirement that the estimated model of a passive local module within
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a dynamic network is also passive. Passivity possesses a closure prop-
erty, which means that any interconnection of passive systems leads
to an overall passive system [10]. This mathematical property is par-
ticularly suited to the context of dynamic networks, which involves
extensive and intricate interconnections of subsystems. Last but not
least, models must reflect fundamental physical properties of the system
being represented. Consequently, if a dynamic network is formed out
of passive systems, each model of these systems must be passive.

Within system identification, passivity has been extensively ex-
plored in the literature [10–16] and it is well known that system
identification methods usually do not guarantee a passive estimate even
if the original system is passive [11,13,15,17]. To tackle this issue,
the so-called passivity enforcement algorithms have been proposed to
enforce passivity as post-processing procedure [17].

Nonetheless, despite being explored in the literature on SISO/MIMO
system identification [10–16], this passivity enforcement issue has
remained unaddressed in the context of dynamic networks, which is
the focus of this paper.

As a result, we present a frequency-domain approach that identifies
passive local models in dynamic networks by incorporating Positive-
Real Lemma (PRL) constraints into the estimation process. The inclu-
sion of energy balance conditions into the estimation process improves
reliability while making it suitable for dynamic network applications.
This new method consists of the following stages:

(1) Obtaining a Frequency Response Function (FRF) for a local
module(s) of interest using the indirect Local Polynomial Method
(iLPM) [18];

(2) Deriving a state-space realization for this FRF via an extension of
the Vector Fitting (VF) method that directly estimates a passive
model.

This paper proposes a novel methodology for this second stage,
ermed here by Passive Vector Fitting (PVF). It constructs a sequence
f passive models during the Sanathanan–Koerner iterations, ensuring
hat the final estimated model is inherently passive. This characteristic
akes the method different from conventional VF, which relies on
ost-processing techniques applied to an estimated non-passive model.

This innovation brings the guarantee of passivity into the realm of
ocal module identification for dynamic networks, addressing an open
uestion in this field. The PVF algorithm estimates a parametric model
or target local module from network data.

This paper is structured into 6 sections. In Section 2, we lay out
he problem statement. Section 3 contains the formulation of energy
alance conditions for discrete-time systems. Section 4 presents the
requency domain identification method that estimates a passive real-
zation. Numerical simulations are then provided in Section 5, where
he method is validated. Lastly, conclusions are presented in Section 6.

We use the following notation throughout the paper: 𝐺0 is used
to denote a transfer function for data-generating system target mod-
ule with 𝐺 its corresponding frequency response data. 𝐺 denotes its
frequency response function estimate. Ğ denotes a passive state-space
realization of the target module. The variable 𝜔 refers to the frequency
vector, while 𝑤 represents the network’s node signals.

2. Problem statement

A general discrete-time model for a dynamic networks is now
discussed [2]. Assuming a network with 𝐿 nodes then, to each node
s associated internal variables 𝑤𝑗 (𝑡), 𝑗 = 1, ..., 𝐿. A module 𝐺0

𝑗𝑖(𝑞) is
the dynamic between node 𝑖 to 𝑗 and is defined as a rational proper
transfer function which admits an equivalent state-space realization
with 𝑖 = 1, ..., 𝐿. Additionally, any external manipulated excitation
variable to node 𝑗 is denoted 𝑟𝑗 (𝑡) and 𝑣𝑗 (𝑡) stands for process noise
at the same node, that is:

𝑤𝑗 (𝑡) =
∑

𝐺0
𝑗𝑖(𝑞)𝑤𝑖(𝑡) + 𝑟𝑗 (𝑡) + 𝑣𝑗 (𝑡), (1)
𝑖∈𝑗

2 
with 𝑞−1 denoting the delay operator, i.e., 𝑞−1𝑢𝑗 (𝑡) = 𝑢𝑗 (𝑡− 1). Dynamic
networks are herein considered without self loops, meaning 𝐺0

𝑗𝑗 = 0.
The set 𝑗 denotes the indices of node signals 𝑤𝑖 connected to 𝑤𝑗 ,
𝑖 ≠ 𝑗, i.e., no zero modules 𝐺0

𝑗𝑖. A zero module refers to a transfer
function 𝐺0

𝑗𝑖 that is identically zero, indicating that there is no dynamic
relationship from node 𝑖 to node 𝑗. The set  denotes the indices of non-
zero external signals 𝑟𝑗 , 𝑗 = 1,… , 𝐿. Furthermore, the process noise can
be given by:

𝑣𝑗 (𝑡) =
∑

𝑗∈𝑗

𝐻𝑗 (𝑞)𝑒𝑗 (𝑡). (2)

in which 𝑒𝑗 is a zero-mean white noise process. 𝑗 denotes the set of
indices of white noise source signals 𝑒𝑗 . 𝐻𝑗 (𝑞) being a proper trans-
fer function, monic, stable, minimum-phase. Each module 𝐺0

𝑗𝑖 can be
conveniently represented as a minimal linear discrete-time state-space
realization:
𝑥(𝑡 + 1) = 𝐀𝑥(𝑡) + 𝐛𝑤𝑖(𝑡),

𝑤𝑗 (𝑡) = 𝐜𝑥(𝑡) + 𝑐0𝑤𝑖(𝑡) + 𝑟𝑗 (𝑡) + 𝑣𝑗 (𝑡).
(3)

with 𝑥(𝑡) ∈ R𝑛, 𝐀 ∈ R𝑛×𝑛, 𝐛 ∈ R𝑛×1, 𝐜 ∈ R1×𝑛 and 𝑐0 ∈ R.
Eq. (1) can also be expressed in matrix form with the time and delay

indices omitted for convenience:

𝐰 = 𝐆𝐰 + 𝐫 + 𝐯. (4)

where 𝐆 =

⎡

⎢

⎢

⎢

⎢

⎣

0 𝐺12(𝑞) ⋯ 𝐺1𝐿(𝑞)
𝐺21(𝑞) 0 ⋯ 𝐺2𝐿(𝑞)

⋮ ⋱ ⋱ ⋮
𝐺𝐿1(𝑞) 𝐺𝐿2(𝑞) ⋯ 0

⎤

⎥

⎥

⎥

⎥

⎦

is a square matrix of

dimensions 𝐿 × 𝐿, 𝐯 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑣1(𝑡)
𝑣2(𝑡)
⋮

𝑣𝐿(𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐫 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑟1(𝑡)
𝑟2(𝑡)
⋮

𝑟𝐿(𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

, and 𝐰 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑤1(𝑡)
𝑤2(𝑡)
⋮

𝑤𝐿(𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

are vectors

ach of dimension 𝐿.
The network topology is assumed known (which 𝐺0

𝑗𝑖 are zero and
hich are not). As the network topology is problem data, it is embed-
ed into the matrix description 𝐆 in (4). An additional suppositions that

the network is well-posed, or equivalently det (𝐈 −𝐆) ≠ 0 must hold. It
is also assumed that the network target module 𝐺0

𝑗𝑖 be identifiable [19–
22] and the external excitation signals 𝑟𝑗 , 𝑗 ∈  are uncorrelated to all
noise signals 𝑒𝑗 ∈ 𝑗 .

Finally, it is herein assumed that the target module 𝐺0
𝑗𝑖 is passive

and this property should be preserved in model to be estimated.
Unlike existing methods in the literature, we present a novel ap-

proach to estimate a passive quadruple (𝐀,𝐛, 𝐜, 𝑐0) of 𝐺0
𝑗𝑖 based on a

time-domain experiment characterized by node measurements (𝑤𝑗 (𝑡),
𝑤𝑘(𝑡), 𝑘 ∈ 𝑗 , 𝑟𝑘(𝑡), 𝑘 ∈ ), with 𝑡 = 1,… , 𝑁 and 𝑇𝑠 denoted as the
sampling time. The objective is thus to estimate a passive realization
for a selected target module of a given dynamic network.

3. Discrete-time passivity

The concept of passivity derives from the general concept of dissipa-
tivity. Dissipative systems can be described via inequalities that account
for energy/power balances. Formulating such inequalities entails defin-
ing functions whose variables describe the energy within the system as
well as functions accounting for energy exchange between the system
and its surroundings. Common formulations use a supply function 𝛷(⋅)
and a storage function 𝑉 (⋅), the latter also known as a Lyapunov
function. While the supply function describes energy exchange (input
and output energy), the storage function describes the energy stored
in the system. Eq. (5) gives an energy balance which can readily be
interpreted as a physical system that cannot store more energy than
the amount fed by the external source(s):

̇
𝑉 (𝑥(𝑡)) ≤ 𝛷(𝑢(𝑡), 𝑦(𝑡)). (5)
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Passive systems are a special class within the broader class of dis-
sipative systems [17]. For this special class, a LTI system, represented
by a rational transfer function (or by Eq. (3)), is equivalently passive
when satisfying the positive-realness bounded/positive-real lemma cri-
teria [17,23]. As stated earlier, this property generalizes stability and
causality [11,17].

The equivalence between passive behavior, positive/bounded-
realness and positive/bounded-real lemma criteria are instrumental to
build formulations that guarantee passivity for LTI systems, see [15,17,
23].

The analysis called passivity assessment is the one that verifies
whether a given system satisfies (or not) the passivity conditions.
This assessment analysis can be made using various techniques includ-
ing sweep methods for raw frequency-domain measured data [16]. A
frequency-sweeping assessment test is based on the following condition
(positive-realness):

𝐺∗
𝑗𝑖(𝑧) + 𝐺𝑗𝑖(𝑧) ⪰ 0, (6)

or all 𝑧 in which 𝑧 = 𝑒𝑗𝜔𝑇𝑠 , 𝜔 ∈ [0, 2𝜋]. 𝐺∗
𝑗𝑖 denotes the conjugate

ranspose of 𝐺𝑗𝑖. In the particular case of SISO systems, passivity
equires the real part of 𝐺𝑗𝑖(𝑒𝑗𝜔𝑇𝑠 ) to be positive.

Alternatively, LMI-based assessments (positive-real lemma) require
parametric description such as a state-space realization to assess the
assivity of a given system [11,17]. If there exists a symmetric and
ositive-definite (𝐏 = 𝐏𝑇 > 0) such that:
[

𝐀𝑇𝐏𝐀 − 𝐏 𝐀𝑇𝐏𝐛 − 𝐜𝑇
(𝐀𝑇𝐏𝐛 − 𝐜)𝑇 𝐛𝑇𝐏𝐛 − 2𝑐0

]

⪯ 0, (7)

ith the system state-space matrices corresponding to a discrete-time
ealization, the system is said passive. In other words, passivity requires
he LMI (7) to be feasible. Otherwise, the system is said to be non-
assive. Feasibility of the LMI is both necessary and sufficient for
atisfying system passivity [12].

Passivity enforcement is typically performed as a post-processing
echnique, aiming to convert a non-passive model into a passive coun-
erpart. Two strategies exist for this purpose: perturbative and non-
erturbative [17]. Perturbative methods achieve passivity by strategi-
ally modifying the state-space realization output parameter (𝐜) and
eedthrough parameter (𝑐0), while keeping 𝐀 and 𝐛 unaltered. This en-
orcement is formulated as an optimization problem, often minimizing
ither the deviation from the original model or the magnitude of the
pplied perturbation [13]. Non-perturbative methods, in contrast, seek
ntirely new values for 𝐜 and 𝑐0 while maintaining the same 𝐀 and 𝐛.
his is achieved by formulating a convex programming problem subject
o specific constraints, such as Positive Real Lemma (PRL) written as
inear Matrix Inequality (LMI) conditions [8].

. The frequency-domain approach

In what follows, we present a two-stage approach to identify passive
ocal modules in a dynamic network. The main advantage of this
pproach lies in the fact that the method complexity does not depends
n the network complexity as a whole but, rather on the complexity of
he local environment, i.e., the number of incoming adjacent modules.

First, an indirect approach is used to compute the correlation be-
ween the excitation and node signals [2] aiming to reconstruct the
ode signals with information from the excitation signal. Then the
onparametric estimator, Local Polynomial Method (LPM) [24], is used
o obtain a frequency response function (FRF) estimate for a selected
arget module. Its efficiency has already been proven to reduce leakage
rrors caused by the application of Fourier transform techniques to
onperiodic data [25]. It is particularly suitable for analyzing signals
hat are not periodic, as it can accurately estimate the FRF even from
finite data set. This combined procedure, that is, to reconstruct the

ode signals then to apply the LPM method, is known as indirect Local
olynomial Method (iLPM), as described in [18].
3 
In the next stage, the estimated FRF is used as an input to the para-
etric estimator. As a result, this initial stage requires no specification

f model order thus allowing the user select an order for the model
ubsequently.

This paper proposes a novel methodology for this second stage,
ermed here by Passive Vector Fitting (PVF). It constructs a sequence
f passive models during the Sanathanan–Koerner iterations, ensuring
hat the final estimated model is inherently passive. This characteristic
akes the method different from conventional VF, which relies on
ost-processing techniques applied to an estimated non-passive model.

This innovation brings the guarantee of passivity into the realm of
ocal module identification for dynamic networks, addressing an open
uestion in this field. The PVF algorithm estimates a passive parametric
odel (quadruple (𝐀,𝐛, 𝐜, 𝑐0)) for target local module 𝐺0

𝑗𝑖 from network
data.

Let us start with a time-domain experiment characterized by node
measurements (𝑤𝑗 (𝑡), 𝑤𝑘(𝑡), 𝑘 ∈ 𝑗 , 𝑟𝑘(𝑡), 𝑘 ∈ ), with 𝑡 = 1,… , 𝑁 .

4.1. The nonparametric estimator as an indirect approach

We employ an indirect implementation of LPM. Traditionally, iden-
tifying a FRF for a given system via LPM involves selecting a set of
signals as predictor inputs and then estimate a MISO model [24]. Con-
versely, the indirect approach hereby advocated entails the following
steps [2]:

(1) Defining a MISO setup with 𝑤𝑗 as output and 𝑤𝑘 as inputs,
𝑤𝑘 ∈ 𝑗 ;

(2) Defining for each 𝑤𝑘 a set of external excitation signals {𝑟𝑚}𝑘,
𝑚 ∈  with a path from 𝑟𝑚 to 𝑤𝑘;

(3) Estimating for each 𝑤𝑘 the transfer functions between {𝑟𝑚}𝑘 and
the node 𝑤𝑘.
It consists of a decomposition of node signals 𝑤𝑘 as 𝑤𝑘 = 𝑤{𝑟𝑚}𝑘

𝑘 +
𝑤⟂{𝑟𝑚}𝑘

𝑘 with 𝑤⟂{𝑟𝑚}𝑘
𝑘 and 𝑟𝑚 uncorrelated so that the component

of 𝑤𝑘 correlated with 𝑟𝑚 be denoted 𝑤{𝑟𝑚}𝑘
𝑘 .

(4) Reconstructing the MISO setup of step (1) only with all corre-
lated components 𝑤{𝑟𝑚}𝑘

𝑘 to be used for the target module’s FRF
estimation.

In order to estimate a FRF using the iLPM, all components 𝑤{𝑟𝑚}𝑘
𝑘

re first pre-processed by dividing it into overlapping segments of equal
ength. During this procedure, a narrow sliding processing window is
mployed. Within each segment, a polynomial of degree 𝑀 is fitted to
ach 𝑤{𝑟𝑚}𝑘

𝑘 using a least square approach. The polynomial coefficients
re then used to compute the FRF of the MISO model from step (4)
hich includes the target module 𝐺𝑗𝑖, using a Fast Fourier Transform

FFT). Further details on the implementation of iLPM, refer to [2,18,
6].

The FRF of the target module obtained via the iLPM algorithm is
enoted as 𝐺𝑗𝑖(𝜔𝜅 ), where 𝜅 = 0,… , 𝑁𝑓 , 𝑁𝑓 is the number of frequency
amples.

.2. Passive vector fitting

The objective is to compute a passive parametric model 𝐺̆𝑗𝑖(𝜔) so
hat 𝐺̆𝑗𝑖(𝜔) ≈ 𝐺𝑗𝑖(𝜔) for all frequencies 𝜔 = 𝜔𝜅 in a least square
ense. To achieve this objective, we implement modifications to the
ector Fitting (VF) algorithm to include passivity conditions within the
stimation process.

VF implementations are numerically robust implementations of the
anathanan–Koerner/Steiglitz–McBride iterations [27,28] in which the
inimization of the non-linear objective function is achieved itera-

ively via a sequence of linear least square problems. The modification
ncludes passivity conditions as constraints in each iteration and is
iscussed as follows.
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The target passive model 𝐺̆𝑗𝑖(𝜔) has the following structure:

𝐺̆𝑗𝑖(𝑧) =
𝑁(𝑧)
𝐷(𝑧)

=
𝑐0 +

∑𝑛
𝛼=1

𝑐𝛼
𝑧−𝑝𝛼

1 +
∑𝑛

𝛼=1
𝑐𝛼

𝑧−𝑝𝛼

(8)

where 𝐺̆𝑗𝑖(𝑧) is an 𝑛th order transfer function parameterized by a set of
oles {𝑝𝛼}𝑛𝛼=1, {𝑐𝛼}

𝑛
𝛼=0 and {𝑐𝛼}𝑛𝛼=1. Also, we henceforth denote 𝜃 and 𝜃

he set of 𝑐𝛼 and 𝑐𝛼 , respectively.
𝐺̆𝑗𝑖(𝜔) admit a minimal state-space equivalence as in (3), namely

𝐀,𝐛, 𝐜, 𝑑} such that:

𝑁(𝑧) =
(

(𝑧𝐈n − 𝐀)−1𝐛 1
)

𝜃
𝐷(𝑧) = 1 +

(

(𝑧𝐈n − 𝐀)−1𝐛
)

𝜃

he algorithm follows the subsequent steps.

.2.1. Step 1
The algorithm initiates assigning an initial set of poles {𝑝𝛼}𝑛𝛼=0.

These poles are typically defined as lightly damped poles with imag-
inary parts logarithmically spaced along the frequency axis, as detailed
in the previous section.

4.2.2. Step 2
Within each iteration, we seek to minimize the linearized version of

the weighted least square error [27] defined as following:

J(𝜃, 𝜃) =
𝑁𝑓
∑

𝜅=1
𝑊 (𝑧𝜅 )2

|

|

|

𝑁(𝑧𝜅 ) −𝐷(𝑧𝜅 )𝐺𝑗𝑖(𝑧𝜅 )
|

|

|

2
, (9)

where 𝑊 (𝑧𝜅 ) is a weighting function, defined as in [29], to consider
measurements with resonance peaks and exhibit significant variations
in magnitude. Then, the optimization problem which should be solved
at each iteration is:
min
𝜃,𝜃,𝐏

J(𝜃, 𝜃)

s.t.
[

𝐀𝑇𝐏𝐀 − 𝐏 𝐀𝑇𝐏𝐛 − 𝐜𝑇
(𝐀𝑇𝐏𝐛 − 𝐜)𝑇 𝐛𝑇𝐏𝐛 − 2𝑐0

]

⪯ 0,
(10)

This guarantees that a sequence of passive models is obtained dur-
ing the VF iterations. Minimizing cost function (10) is equivalent to
minimizing

J(𝜃, 𝜃) =
‖

‖

‖

‖

‖

𝐌
[

𝜃
𝜃

]

− 𝐅
‖

‖

‖

‖

‖

2

, (11)

in which 𝐅 =
[

ℜ(𝐅𝑐 )
ℑ(𝐅𝑐 )

]

and 𝐌 =
[

ℜ (𝐌𝑐 ) 𝟏 −ℜ (𝐌𝑐 )
ℑ (𝐌𝑐 ) 𝟏 −ℑ (𝐌𝑐 )

]

,

𝐅𝑐 =

⎛

⎜

⎜

⎜

⎜

⎝

𝐺𝑗𝑖(𝑧1)
𝐺𝑗𝑖(𝑧2)

⋮
𝐺𝑗𝑖(𝑧𝑁 )

⎞

⎟

⎟

⎟

⎟

⎠

,𝐌𝑐 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑊 (𝑧1)(𝑧1𝐈n − 𝐀)−1𝐛
𝑊 (𝑧2)(𝑧2𝐈n − 𝐀)−1𝐛

⋮
𝑊 (𝑧𝑁 )(𝑧N𝐈n − 𝐀)−1𝐛

⎞

⎟

⎟

⎟

⎟

⎠

,

superscript (⋅)𝑐 stands for a complex valued matrix and both ℜ(⋅) and
ℑ(⋅) stand for its real and imaginary parts, respectively. Eq. (11) is

J(𝜃, 𝜃) =
[

𝐌
[

𝜃
𝜃

]

− 𝐅
]𝑇 [

𝐌
[

𝜃
𝜃

]

− 𝐅
]

. (12)

Using the following QR decomposition 𝐌 = 𝐐𝐑 with 𝐐𝑇𝐐 = 𝐈 and after
some algebra we conclude that:

J(𝜃, 𝜃) =
(

𝐑
[

𝜃
𝜃

]

−𝐐𝑇𝐅
)𝑇 (

𝐑
[

𝜃
𝜃

]

−𝐐𝑇𝐅
)

+ 𝐅𝑇
(

𝐈 −𝐐𝐐𝑇
)

𝐅

or

𝐽 (𝜃, 𝜃) = 𝐄𝑇𝐄 + 𝛿2,

with 𝐄 = 𝐑
[

𝜃
]

−𝐐𝑇𝐅 and 𝛿2 = 𝐆𝑇
(

𝐈 −𝐐𝐐𝑇
)

𝐆.

𝜃 V

4 
Minimizing J(𝜃, 𝜃) is equivalent to minimizing J(𝜃, 𝜃)−𝛿2 = J𝛿(𝜃, 𝜃) =
𝐄𝑇𝐄. Using Schur complements leads to an epigraph convex formula-
tion and a standard Semi-Definite Programming (SDP) problem results
as in Eq. (13):

min
𝐜,𝐜̃,𝐏,𝜇

𝜇

s.t.
[

𝜇 𝐄𝑇

𝐄 𝐈

]

⪰ 0

𝐏 ≻ 0

𝜇 ⪰ 0
[

𝐀𝑇𝐏𝐀 − 𝐏 𝐀𝑇𝐏𝐛 − 𝐜𝑇
(𝐀𝑇𝐏𝐛 − 𝐜)𝑇 𝐛𝑇𝐏𝐛 − 2𝑐0

]

⪯ 0

(13)

with A and b problem data previously derived via the Step 1 at first
iteration or Step 3 otherwise. This problem can be solved to find the
optimal pair [𝐜, 𝐜̃]𝑇 with the CVX solver [30].

4.2.3. Step 3
On terminating each iteration, poles are updated using:

{𝑝1,… , 𝑝𝑛} = 𝑒𝑖𝑔(𝐀 − 𝐛𝐜̃), (14)

and them Step 2 is called.
The procedure is repeated recursively until convergence of (14).1 On

completion of the PVF algorithm, a passive model 𝐺̆𝑗𝑖(𝑧) is obtained
as either a transfer function or an equivalent minimal state-space
realization.

In summary, by adopting the approach hereby described accurate
guaranteed passive models for the target modules are obtained. The two
stages leading to a passive estimate are: (i) use of the iLPM to obtain a
FRF for the local module(s) of interest; (ii) use of the PVF to achieve a
passive parametric description based on the FRF by incorporating the
PRL constraints into the optimization problem.

5. Numerical simulations

This section presents numerical simulations to demonstrate the
practical application of our proposed methodology. We use a bench-
mark case study of a network system with complex interconnections,
visualized in Fig. 1 and previously analyzed in [18]. All noise, exter-
nal sources, and module specifications remain unchanged, except for
module 𝐺0

31, which is defined in this section. This specific modification
serves a crucial purpose: to illustrate the estimation of a passive model
for a passive system. This necessitates the original transfer function to
be positive real. For the purpose of statistical analysis in this section,
the model order of the system to be estimated, 𝐺0

31, is assumed to be
known.

The dynamics embedded in the network are defined as follows, with
a sampling time of 0.01 s:

𝐺0
32 =

0.09𝑞−1

1 + 0.5𝑞−1
;

0
34 =

1.184𝑞−1 − 0.647𝑞−2 + 0.151𝑞−3 − 0.082𝑞−4

1 − 0.8𝑞−1 + 0.279𝑞−2 − 0.048𝑞−3 + 0.01𝑞−4
;

0
14 = 𝐺0

21 =
0.4𝑞−1 − 0.5𝑞−2

1 + 0.3𝑞−1
;𝐻0

1 = 1
1 + 0.2𝑞−1

;

𝐺0
12 = 𝐺0

23 =
0.4𝑞−1 + 0.5𝑞−2

1 + 0.3𝑞−1
;𝐻0

2 = 1
1 + 0.3𝑞−1

;

𝐻0
3 =

1 − 0.505𝑞−1 + 0.155𝑞−2 − 0.01𝑞−3

1 − 0.729𝑞−1 + 0.236𝑞−2 − 0.019𝑞−3
;𝐻0

4 = 1.

1 For detailed insights into the convergence challenges associated with
ector Fitting, we recommend consulting Chapter 7 of the reference book [17].
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Fig. 1. Network example with 4 nodes, 3 reference signals and noise sources at each
node [18].

5.1. A second-order passive model

𝐺0
31(𝑧) =

0.1717𝑧2 + 0.0202𝑧 − 0.1515
𝑧2 − 1.771𝑧 + 0.8857

.

The MATLAB Toolbox for Dynamic Network Identification (beta
version 0.1.0) [31] was employed to initially assess the identifiability
of the target module 𝐺0

31 based on the network’s topology. The toolbox
confirmed that 𝐺0

31 is identifiable. As established in [32,33], for targets
satisfying graphical identifiability conditions, ensuring an informative
excitation signal suffices. We conducted 100 independent Monte-Carlo
experiments in Simulink, each comprising 1300 samples. For each
experiment, the data is generated using known reference signals 𝑟1(𝑡),
𝑟2(𝑡) and 𝑟4(𝑡) that are realizations of independent white noise with
variance of 0.1, also the noise sources 𝑒1(𝑡), 𝑒2(𝑡), 𝑒3(𝑡) and 𝑒4(𝑡) have
variance 0.05, 0.08, 1, 0.1 respectively. Each experiment yielded a
parametric state-space model for 𝐺0

31.
To facilitate parameter comparison independent of units or scale,

we employed the Coefficient of Variation (CV) defined as:

𝐶𝑉 (𝑥) =
𝛿𝑥
𝑥̃

⋅ 100

where 𝑥 represents a normally distributed random variable, 𝛿𝑥 its
standard deviation, and 𝑥̃ its mean.

We now discuss the parameterization choices for each stage of our
approach.

iLPM: We proceed to estimate 𝐺0
31 as a MISO identification prob-

lem with three inputs (𝑤1, 𝑤2, 𝑤4) and one output (𝑤3). For the
iLPM, we opted for a second-degree polynomial. This choice improves
the smoothness of the non-parametric estimate across the frequency
range by providing broader bandwidth. However, it is important to
be mindful of introducing bias through excessive bandwidth. Since the
subsequent Vector Fitting step also introduces some smoothing, this
initial parameterization becomes less critical.

As shown in [18], the minimum required number of frequencies
for this configuration is 12. We opted for a wider bandwidth of 24
frequencies due to the presence of substantial noise. This reduces the
impact of noise while minimizing bias error.

Passive Vector Fitting: During the PVF step, a linear weighting proce-
dure is employed (see [29]) to estimate a passive second-order model.
We have empirically concluded that a maximum of 50 iterations is
enough to reach convergence.

The combined pole and residue estimates for 𝐺0
31 across all exper-

iments are summarized in Fig. 2. The analysis reveals c = [𝑐1 𝑐2] =
[0.3243 −0.3036] suggesting dominant real and imaginary components
of the poles at 𝑎 = 0.8855 and 𝑏 = 0.3187.

Fig. 3 showcases the frequency response curves for the data and
the estimated model for the iLPM step and for the PVF step. In the
5 
Fig. 2. Coefficient of Variation of the parameters of 𝐺̂31, estimated via ‘iLPM+IVVF’.

Fig. 3. Frequency response diagram of data and estimated models (2nd order).

particular instance depicted in Fig. 3, the RMSE between the 𝐺̆31 curve
and the data is 0.07682. Across 100 experiments, the average error
and variance between 𝐺̆31 and the data is 0.08634 and 0.0131, respec-
tively. This figure effectively demonstrates the efficacy of the proposed
methodology in achieving passivity while preserving the desired system
dynamics.

This case study successfully demonstrates the effectiveness of in-
corporating energy consistency criteria into the developed approach
for passive model estimation. By focusing on the system matrices 𝐜
and 𝑐0, our passive identification method ensures compliance with en-
ergy balance principles while minimizing parameter deviations. Impor-
tantly, the method proves successful in a complex 7-module network,
highlighting its suitability for systems with intricate structures and
correlated input and output signals.

5.2. A third-order passive model

Building upon the previous case study, we now consider a modified
network scenario where the target module 𝐺0

31 is defined as a 3rd order
transfer function, with a sampling time of 0.01 s:

𝐺0 (𝑧) =
10−4(7.214𝑧3 − 7.018𝑧2 − 7.196𝑧 + 7.036)

.
31 𝑧3 − 2.707𝑧2 + 2.418𝑧 − 0.7107
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Fig. 4. Frequency response diagram of data and estimated models (3rd order).

All other network module specifications remain unchanged from the
previous case study. The key objectives of this second case study are
to demonstrate the ability of the Passive Vector Fitting (PVF) method
to estimate a 3rd order passive model for the target module 𝐺0

31, and
to analyze the estimation accuracy and the required compensation to
enforce passivity compared to the previous 2nd order case. Similar
to the first case study, we conducted 100 independent Monte-Carlo
experiments, each with 1300 samples of data generated using the same
noise and reference signal specifications.

In the iLPM step, we increased the polynomial order to 3 to better
capture the higher order dynamics of the target module. The minimum
required number of frequency points was also increased to 18 to ensure
sufficient bandwidth coverage.

During the PVF step, the algorithm was configured to estimate a 3rd
order passive state-space realization for 𝐺0

31. The maximum number of
iterations was maintained at 50.

Estimation Accuracy: The average RMSE between the estimated 3rd
order passive model 𝐺̆31 and the true 3rd order 𝐺0

31 across the 100 ex-
periments was 0.001948, with a variance of 0.0009276. Fig. 4 illustrate
the frequency response curves for the data and the estimated models
and, for that instance, the RMSE is 0.002439.

Passivity Enforcement: The analysis revealed that 92% of the 3rd
order model estimates required passivity enforcement, compared to
94% in the 2nd order case. The overall compensation remained moder-
ate, suggesting that the proposed PVF method can effectively estimate
passive models even for higher order target modules.

Fig. 5 provides a visual representation of the parameter variations
in the estimated model.

6. Conclusions

This paper has demonstrated how an important gap in network iden-
tification can be effectively addressed with proven satisfactory results.
The solution entails a sequential use of two well-established approaches
iLPM (non-parametric) and VF (parametric) that combined form the
semi-parametric algorithm herein developed. The latter parametric
approach has been extended to include passivity constraints in its
iterative procedure. Our findings indicate that incorporating passivity
constraints into existing methodologies has had negligible impact on
approximation metrics while ensuring consistent estimates with respect
to energy constraints which is a mandatory property under complex
interconnection of passive systems.
6 
Fig. 5. Coefficient of Variation of the parameters of 𝐺̂31, estimated via ‘iLPM+IVVF’.
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