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Abstract. The class of finite impulse response (FIR), Laguerre, and Kautz functions can be
generalized to a family of rational orthonormal basis functions for the Hardy space H2 of stable
linear dynamical systems. These basis functions are useful for constructing efficient parameteriza-
tions and coding of linear systems and signals, as required in, e.g., system identification, system
approximation, and adaptive filtering. In this paper, the basis functions are derived from a transfer
function perspective as well as in a state space setting. It is shown how this approach leads to
alternative series expansions of systems and signals in time and frequency domain. The generalized
basis functions induce signal and system transforms (Hambo transforms), which have proved to be
useful analysis tools in various modelling problems. These transforms are analyzed in detail in this
paper, and a large number of their properties are derived. Principally, it is shown how minimal state
space realizations of the system transform can be obtained from minimal state space realizations of
the original system and vice versa.
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1. Introduction. Orthonormal bases and the transformations that are related
to them are useful tools in many branches of science. Well-known examples are the
trigonometric bases which induce the various Fourier transforms or the more recently
developed orthonormal wavelet bases and their associated transforms. Within the
field of systems and control theory, rational orthonormal bases play an important role.
By approximating the impulse response of a linear time-invariant (LTI) system by a
finite sum of exponentials, the problem of modelling and identification is considerably
simplified. This comes down to using rational basis functions in the model structure.

Over the last years a general theory has been developed for the construction and
analysis of generalized orthonormal rational basis functions for the class of stable
linear systems, which extends the work on Laguerre filters by Wiener in the thirties
[19]. The corresponding filters are parameterized in terms of prespecified poles, which
makes it possible to incorporate a priori information about time constants in the model
structure. The main applications are in system identification and adaptive signal pro-
cessing, where the parameterization of models in terms of finite expansion coefficients
is attractive because it is linear-in-the-parameters. This allows the use of simple lin-
ear regression estimation techniques to identify the system from observed data, thus
avoiding nonconvex optimization problems. Orthonormality is associated with white
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noise input signals. However, the special shift structure of generalized orthonormal
basis functions gives a certain Toeplitz structure for general quasi-stationary input
signals, which can be utilized to construct efficient algorithms and to derive statis-
tical performance results. The use of orthogonal basis functions has also resulted in
intuitive expressions for the variance of estimated transfer functions and noise mod-
els. Here the basis functions and related reproducing kernels are used to analyze
and simplify complicated variance expressions. See [46, 27, 28] for the most recent
contributions. For the field of adaptive filtering, see, for instance, [2, 9, 21].

The application potentials of orthogonal basis functions go beyond the areas of
system identification and adaptive signal processing. Many problems in circuit theory,
signal processing, telecommunication, systems and control theory, estimation, and
optimization theory benefit from an efficient representation or parameterization of
particular classes of signals/systems. See, for instance, [31, 5] for applications in
audio processing and [24, 23, 36] for the use of orthogonal basis functions in nonlinear
modelling and estimation.

By exploiting prior knowledge of the object (signal/system) to be described, a de-
composition of signals/systems in terms of flexibly chosen orthogonal (independent)
components leads to efficient and robust estimation and prediction algorithms. Or-
thogonality is the key principle in linear estimation; see [16]. Orthogonal filters, which
correspond to orthogonal rational functions, are of capital importance in filter design
and robust filter implementation, as discussed in, e.g., [32].

In this paper a comprehensive account is given of the unitary transforms that re-
sult when considering series expansion representations of signals and systems in terms
of a special class of generalized rational orthonormal basis functions, the so-called
Hambo1 functions. This transform generalizes the Z- and the Laguerre transforms
and will be shown to have very intriguing structural properties. Preliminary results
on this transform have appeared earlier in the analysis of system identification algo-
rithms [39], in system approximation [13], and in minimal partial realization [37, 8].
In these papers, the transform results were shown to be instrumental in the statisti-
cal analysis of system identification and in solving partial realization problems. The
present paper is the first to give a comprehensive account of the development and
the properties of the considered transform, including analysis and algorithms in state
space form.

The technique of transformation, or, equivalently, the choice of an alternative
domain of representation, has been used successfully for the solution of a wide range
of problems in various scientific areas; cf. Laplace and Fourier transformations in
the fields of system and control theory or signal processing. It is expected that the
transformation which is proposed in this paper and that has the powerful property
that it can be adapted to the dynamics of a specific problem will open new possibilities
for the solution of a broad class of problems.

The remainder of the paper is constructed as follows. First, in section 2, the
considered basis functions will be specified and reviewed. After considering series
expansion expressions in section 3, the related signal and system transforms are pre-
sented in section 4. In section 5, the constituting expressions for calculating the
transforms are presented. Additional properties are discussed in section 6, while in
section 7 some extensions are briefly indicated.

1The word Hambo originated as an acronym for Hankel matrix based orthogonality. In the
remainder of the paper, these Hambo functions will also be referred to as generalized basis functions.
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Notation.

AT , A,A∗ Transpose, respectively, complex conjugate and complex conjugate transpose
of the matrix A.

T Unit circle.
Lp×m

2 (T) Hilbert space of complex matrix functions of dimension p×m that are square
integrable on the unit circle. The superscript p × m will be suppressed if
p = m = 1.

Hp×m
2 Hardy space of all functions which are analytic in the exterior of the unit disc

such that2

lim
r→1

1

2π

∫ 2π

0

Trace(f(reiω)f(reiω)∗)dω < ∞.

RHp×m
2 Subspace of rational transfer functions of Hp×m

2 .
H⊥

2 The orthogonal complement of H2 in L2.
Hp×m

2− The same as Hp×m
2 , with the restriction that the functions must be zero at

infinity (i.e., f0 = 0).
RHp×m

2− Subspace of rational transfer functions of Hp×m
2− .

�n2 (J) The space of square summable vector sequences, of vector dimension n, where
J denotes the index set of the sequence. The superscript n will be omitted if
n = 1.

〈F,G〉 Inner product of F and G in Lp×m
2 (T):

1

2πi

∫ 2π

0

Trace{FT (eiω)G(eiω)}dω.

〈x, y〉 Inner product of x and y in �n2 (J):
∑

k∈J x
T (k)y(k).

[[x, y]] �2 Matrix “inner product”
∑

k∈J x(k)y
T (k), with x ∈ �n×p

2 (J), y ∈ �m×p
2 (J).

[[X,Y ]] L2 Matrix “inner product” 1
2πi

∮
X(z)Y ∗(1/z)dzz , with X ∈ Ln×p

2 (T), Y ∈
Lm×p

2 (T).3

PX Orthogonal projection onto the subspace X.
ei ith canonical Euclidean basis (column) vector.
q shift operator; for x ∈ �2, n ∈ Z: (qnx)(t) = x(t+ n).

In this paper, �2 signals will be generally denoted by small characters, whereas
capitals will be used for their Z-transforms, i.e., x(t), respectively, X(z). Expansion
coefficients of a signal in a nonstandard basis are characterized with the ˘ symbol,
as in x(t) =

∑
k x̆(k)fk(t). By abuse of notation, systems and operators will gener-

ally be denoted with arguments; for instance, x(t), G(z) will denote elements of �2,
respectively, H2.

Unless otherwise mentioned, the notion of orthonormality will be used with re-
spect to the �2 or L2 inner products, as defined above.

2. Basis construction. In this section, we will present the basis functions under
consideration, first in transfer function form, followed by an interpretation in a state
space setting.

2Here H2 is identified with the subspace of L2 with vanishing negative Fourier coefficients. More
precisely, for F ∈ H2, F (z) = f(0) + f(1)z−1 + f(2)z−2 + · · · , and ∑∞

k=0 |f(k)|2 < ∞.
3Here Y ∗(1/z) =

∑
k y(k)∗z−k.
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2.1. Transfer function approach. The main idea of constructing rational or-
thonormal basis functions is to generate a set of orthonormal functions that have
exponential decay. A straightforward approach to this problem is to orthonormalize
the set of functions

Fi,j(z) =
1

(z − ai)j
, i ∈ N, 1 ≤ j ≤ mi,(2.1)

where the poles ai can be any complex number with |ai| < 1, such that ai �= ak,
i �= k, and where mi is the multiplicity of pole ai. Obviously any rational function in
H2− can be described as a weighted sum of these functions if the poles ai are chosen
appropriately.

Proposition 2.1. Application of the Gram–Schmidt procedure to the sequence
of functions, given by (2.1), yields the orthonormal functions

Φk(z) =

√
1− |ξk|2
z − ξk

k−1∏
j=1

1− ξ̄jz

z − ξj
, k ∈ N,(2.2)

where ξNi+l = ai, 1 ≤ l ≤ mi, with Ni =
∑i−1

j=1 mj.
According to [45], this sequence of orthonormal functions was originally derived

in the 1920s by Takenaka [38] and Malmquist [20] and will henceforth be referred to
as the Takenaka–Malmquist functions. In the 1950s, the continuous-time version of
these functions was derived by Kautz [18] in the context of network synthesis. They
emerged again in the work of Ninness and Gustafsson [26] in the context of system
identification. See also [4]. Orthonormality of these functions can easily be established
using residue calculus. A more fundamental question is whether the orthonormal set is
complete in H2−. The following result, already given in [38] and [20], gives necessary
and sufficient conditions for completeness.

Proposition 2.2. Let {ξk}k∈N be such that |ξk| < 1 for all k ∈ N. The set of
Takenaka–Malmquist functions {Φk(z)}k∈N, as given in (2.2), is complete in H2− if
and only if

∞∑
k=1

(1− |ξk|) = ∞.(2.3)

In other words, if the sequence of poles does not converge to the unit circle “too
fast,” then the set of Takenaka–Malmquist functions constitutes an orthonormal basis
for H2−. Until the early 1990s, only special cases of these functions have been used
extensively, especially in the context of system identification and signal processing.
Of these special cases, the pulse and Laguerre functions are the best known examples.
Consider the case where for all k, ξk = a ∈ R, with |a| < 1. The corresponding basis
functions are the discrete Laguerre functions

Φk(z) =

√
1− a2

z − a

[
1− az

z − a

]k−1

(2.4)

that reduce to the pulse functions Φk(z) = z−k for a = 0.
A second special case that is discussed in detail in this paper considers the situa-

tion where all poles are taken in a repetitive manner from a finite set {ξ1, ξ2, . . . , ξnb
},

such that ξk·nb+j = ξj , where k ∈ N and j = 1, . . . , nb. When the poles appear in
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complex conjugate pairs, this results in the class of so-called generalized orthonormal
basis functions, or Hambo functions [13]. For ease of notation, we introduce the inner

(stable all-pass) function Gb(z) =
∏nb

i=1[
1−ξ̄iz
z−ξi

]. Now since ξnb+1 = ξ1, it follows that

Φnb+1(z) =

√
1−|ξ1|2
z−ξ1

Gb(z) = Φ1(z)Gb(z), and it is easy to see that an equivalent rela-

tion holds for the next functions, Φnb+j(z) = Φj(z)Gb(z), j ∈ N. From these relations
it is straightforward to derive the so-called generalized shift property:

Φk·nb+j(z) = Φj(z)G
k−1
b (z), k ∈ N, j = 1, . . . , nb.

For convenience of notation, these functions are often grouped into vector functions

Vk(z) =
[
Φ(k−1)·nb+1(z) Φ(k−1)·nb+2(z) · · · Φk·nb

(z)
]T

,(2.5)

in which case the shift property comes down to Vk(z) = V1(z)G
k−1
b (z). This shift

property will be of paramount importance in the remainder of this paper.
In the context of system approximation and identification, it is often desired that

the system responses are real-valued, and for that reason it will be advantageous to
restrict the basis functions to being real-valued as well. Ninness and Gustafsson [26]
showed that if the poles appear in complex conjugate pole pairs, all basis functions can
be made real-valued by a simple unitary transformation of the set of basis functions.

2.2. State space interpretation. An alternative way to interpret or derive
these basis functions employs state space models. Consider a (single input) stable
state space model

x(t+ 1) = Ax(t) +Bu(t).(2.6)

The function V (z) = [zI −A]
−1

B is the transfer function from the input u(t) to
the states x(t). Now assume that the input signal u(t) is a zero mean white noise
process with variance 1, i.e., E{u(t)u(t + k)} = δk. The state covariance matrix P =
E{x(t)xT (t)} satisfies the Lyapunov equation P = APAT + BBT . P also equals the
so-called controllability Gramian of the state space model. The reason why we are
interested in the state covariance matrix is that

P =
1

2πi

∮
T

V (z)V T (1/z)
dz

z
= [[V, V ]].(2.7)

The basic idea now is to find a new state space realization for which the state covari-
ance equals the identity matrix, P = I. The corresponding input to state transfer
functions will then be orthonormal and will span the same space as the original func-
tions, as only linear transformations are considered. A state space realization for
which P = I is called input balanced [22].

In order to extend this resulting finite set of orthonormal functions, we consider
the class of square inner functions, i.e., stable transfer functions Gb(z) that satisfy

Gb(z)G
T
b

(
1

z

)
= I.

It was shown in [33] that square inner functions can be realized by so-called orthogonal
state space realizations; i.e., they satisfy Gb(z) = D + C(zI −A)−1B, where[

A B
C D

]T [
A B
C D

]
=

[
A B
C D

] [
A B
C D

]T
= I.(2.8)
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From this orthogonality property, it directly follows that the controllability Gramian
P and the observability Gramian Q, which are defined as P = APAT + BBT and
Q = ATQA + CTC, satisfy P = Q = I, and so realizations with this property are
balanced in the sense of [22]. Thus it follows that the input-to-state functions (i.e.,

the elements of V (z) = [zI −A]
−1

B ) are mutually orthonormal with respect to the
H2− inner product (assuming Gb(z) is scalar).

Example 2.3. We consider first and second order inner functions.
1. Let Gb(z) = 1−az

z−a , with |a| < 1. Then {a,√1− a2,
√

1− a2,−a} is a balanced

realization for Gb, and the input to state transfer is
√

1−a2

z−a , the first Laguerre
function with pole in a.

2. Let Gb(z) = −cz2+b(c−1)z+1
z2+b(c−1)z−c with some real-valued b, c satisfying |c|, |b| < 1.

A balanced realization (see, e.g., [39]) results in V (z) =
√

1−c2

z2+b(c−1)z−c [(z− b) ·√
(1− b2)]T , which represents the first two functions of the so-called 2-param-

eter Kautz construction.
On the other hand, when given an arbitrary pair (A,B) with controllability

Gramian P = I, it is easy to show that there exist matrices (C,D) such that the
transfer function G(z) = D+C(zI −A)−1B is an inner function [12]. Note that this
realization is automatically balanced.

Hence, when the state space approach is used to create orthonormal functions,
these functions can be considered as the input-to-state functions of a balanced real-
ization of an inner function.

A second result from [33] as indicated in [3] is that for two inner functions Gi(z) ∈
H2 (i = 1, 2), with corresponding balanced realizations (Ai, Bi, Ci, Di), the product
G2(z)G1(z) has a balanced realization (A,B,C,D) with

[
A B
C D

]
=

 A1 0 B1

B2C1 A2 B2D1

D2C1 C2 D2D1

 .(2.9)

For any input signal u(t), the state sequence x(t) related to this realization can
be decomposed by x(t) = [x1(t) x2(t)]

T , where x1(t) is the state trajectory related
to the realization of G1(z) separately:

x1(t) = [qI −A1]
−1B1u(t) and x2(t) = [qI −A2]

−1B2G1(q)u(t).

Here q denotes the shift operator, as defined in our notation.
In other words, there exists a recursive structure, where concatenating inner func-

tions provide an increasing number of state functions that are orthogonal to each other
with respect to the standard �2 inner product, i.e.,

∑
t x

T
k (t)xj(t) = δkj or, equiva-

lently, 1
2πi

∫ 2π

0
XT

k (eiω)Xj(eiω)dω = δkj . This leads to the following construction.
Proposition 2.4. Given a sequence of inner functions Gi(z), i = 1, 2, . . . ,

each with balanced realization (Ai, Bi, Ci, Di), the collection of functions {Xi(z), i =
1, 2, . . . } with

X1(z) = [zI −A1]
−1B1, Xi(z) = [zI −Ai]

−1BiG1(z)G2(z) · · ·Gi−1(z),

is mutually orthonormal.
With this property and the balanced realizations of Example 2.3, it is straight-

forward to rederive the Takenaka–Malmquist functions (2.2) as well as the Laguerre
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functions and the Hambo functions (see (2.5)). Both approaches lead to the same class
of functions. Hence the completeness condition (2.3) is valid for both approaches. The
special case of Proposition 2.4, where all Gi(z) are equal to the same second order
inner function with a complex conjugate pole pair (see Example 2.3 2) is known in
the literature as the 2-parameter Kautz construction [42, 14, 26].

3. Related bases and series expansions. Since the Takenaka–Malmquist
functions constitute a basis for H2−, a basis for the related space �2(N) follows by
considering the inverse Z-transform, which is isomorphic. With {φk(t)} the impulse
response (Fourier coefficients) of Φk(z), according to Φk(z) :=

∑∞
t=1 φk(t)z

−t, the
functions {φk(t)} will constitute an orthonormal basis for �2(N). Note that these ba-
sis functions exhibit the property that they can incorporate system dynamics in a very
general way. One can construct inner functions from any given set of poles, and thus
the resulting basis can incorporate dynamics of any complexity, combining, e.g., both
fast and slow dynamics in damped and resonant modes. Considering the Takenaka–
Malmquist basis functions, for any system H(z) ∈ H2− or signal y(t) ∈ �2(N), there
exist unique series expansions:

H(z) =

∞∑
k=1

〈H,Φk〉Φk(z),(3.1a)

y(t) =

∞∑
k=1

〈y, φk〉φk(t).(3.1b)

In the remainder of this paper, attention will be focused on the Hambo functions,
as introduced in section 2.1, i.e., the subclass of Takenaka–Malmquist functions where
the basis poles are taken in a repetitive manner from a finite set {ξ1, . . . , ξnb

}. When
these poles {ξi}nb

i=1 are stable, i.e., |ξi| < 1, it follows from Proposition 2.2 that the
set of Hambo functions constitutes a basis for H2−. In what follows, we will also
assume that the basis poles appear in complex conjugate pairs only. Furthermore, we
will primarily consider the real-rational form of these functions that results from the
application of Proposition 2.4, using a real-valued state space realization of the inner
function

Gb(z) =

nb∏
i=1

1− ξ̄iz

z − ξi
.(3.2)

Definition 3.1. Let Gb(z) be a real-rational inner function, with real-valued
minimal balanced realization (Ab, Bb, Cb, Db). Let for k ∈ N the vector functions

Vk(z) be defined as Vk(z) = [zI −Ab]
−1

BbG
k−1
b (z). Then the collection of all scalar

elements of the vectors Vk(z), Φk,i(z) = eTi Vk(z), k ∈ N, 1 ≤ i ≤ nb, is referred to as
a Hambo basis of H2−. The corresponding vectors with basis functions for �2(N) will
be denoted by {vk(t)}.

It is straightforward to recognize the shift structure in the functions vk(t):

vk+1(t) = Gb(q) · vk(t), k = 1, 2, . . . ,(3.3a)

v1(t) = At−1
b Bb.(3.3b)

For the class of Hambo functions, based on an inner function Gb(z), the series
expansions (3.1) can be rewritten such that the vector structure is maintained:
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H(z) =

∞∑
k=1

h̆T (k)Vk(z), h̆(k) = [[Vk, H]],(3.4a)

y(t) =

∞∑
k=1

y̆T (k)vk(t), y̆(k) = [[vk, y]].(3.4b)

The vector coefficient sequence y̆ = {y̆(k)}k∈N in (3.4) is called the Hambo signal
transform of y. This transform will play a fundamental role in this paper. A formal
definition will be given in section 4. The next proposition shows that the Parseval
identity holds for this transform.

Proposition 3.2 (Parseval’s identity). For any pair x(t), y(t) ∈ �2(N) and cor-
responding expansion coefficient sequences x̆, y̆, taken with respect to the basis vectors
{vk(t)}k∈N as in (3.4), it holds that 〈x, y〉 = 〈x̆, y̆〉.

Proof. 〈x, y〉 = [[
∑

k x̆
T (k)vk,

∑
k′ y̆T (k′)vk′ ]] =

∑
k

∑
k′ x̆T (k)[[vk, vk′ ]]y̆(k′) =∑

k x̆
T (k)y̆(k).
A dual orthonormal basis of �nb

2 (N). One consequence of Proposition 3.2 is
that an orthonormal basis of �nb

2 (N) can be obtained by taking the signal transform
of the standard orthonormal basis functions of �2(N): δ(t− k), k > 0. The resulting
basis functions wl are given by

wl(k) = [[vk(t), δ(t− l)]] =

∞∑
t=1

vk(t)δ(t− l) = vk(l).(3.5)

Therefore, we can state the following.
Proposition 3.3 (dual orthonormal basis). Consider the basis function vectors

vk(t) with k ∈ N, as defined in Definition 3.1. The vector functions wt(k) ∈ �nb
2 , t ∈ N,

defined by wt(k) = vk(t), constitute an orthonormal basis of the space �nb
2 (N).

It turns out that—as is the case with vk(t) (see (3.3))— these functions wk(t) can
be calculated using a shift structure.

Proposition 3.4. Let Gb(z) be a scalar inner function with McMillan degree
nb > 0, having a minimal balanced realization (Ab, Bb, Cb, Db). Consider vk(t), wk(t)
as before, and let N(z) = Ab +Bb[zI −Db]

−1Cb. Then

wk+1(t) = N(q) · wk(t), k = 1, 2, . . . ,(3.6a)

w1(t) = BbD
t−1
b ,(3.6b)

where the shift operator q operates on the time sequence wk, i.e., (qwk)(t) = wk(t+1).
Proof. The proof uses the balanced state space realization (Ak+1, Bk+1, Ck+1,

Dk+1) of Gk+1
b (z) (see (2.9)), where

Ak+1 =


Ab 0 · · · · 0

BbCb Ab 0 · 0
BbDbCb BbCb · · 0

...
... · . . . 0

BbD
k−1
b Cb BbD

k−2
b Cb · · · BbCb Ab

 ,
(3.7)

Bk+1 =


Bb

BbDb

BbD
2
b

...
BbD

k
b

 .
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It is straightforward that
[
vT1 (t) · · · vTk+1(t)

]T
= At−1

k+1Bk+1, and hence w1(t) =

BbD
t−1
b . For t ≥ 1

wk+1(t+ 1) = vt+1(k + 1) = Abvt+1(k) +BbCbvt(k) + · · ·+BbD
k−1
b Cbv1(k)

= Abwk(t+ 1) +

t∑
i=1

BbD
i−1
b Cbwk(t+ 1− i),

which proves the result.

We will denote the Z-transform of the functions wk(t) byWk(z) :=
∑∞

t=1 wk(t)z
−t,

while as a direct result of Proposition 3.4 it holds that Wk(z) = Nk−1(z) ·W1(z), with
W1(z) := (zI − Db)

−1Bb. Note the duality between the functions Gb(z) and N(z),
which are simply related by ordering the state space realizations in reverse.

As a consequence, for any strictly proper system H̆(z) ∈ Hnb
2− or signal y̆(t) ∈

�nb
2 [1,∞), there exist unique series expansions:

H̆(z) =

∞∑
k=1

h(k)Wk(z), h(k) = 〈H̆,Wk〉,(3.8)

y̆(t) =

∞∑
k=1

y(k)wk(t), y(k) = 〈y̆, wk〉.(3.9)

In fact, these are exactly the inverses of the expansions given by (3.4).

Extension to L2. The bases for H2− that we introduced can be extended to
L2(T), i.e., to include (H2−)⊥ (see, e.g., [1]). First observe that given a basis {Fk(z)}
for H2−, {z−1Fk(

1
z )} is a basis for (H2−)⊥. In fact, given two bases for H2−, say,

{Fk(z)} and {Gk(z)}, the set of functions {Fk(z), z
−1Gk(

1
z ), k = 1, 2, . . . } is a basis

for H2− ∪ (H2−)⊥ = L2(T). Using an inner function Gb(z) with balanced realization
(Ab, Bb, Cb, DB), the Hambo functions have been defined as {V1(z)Gb(z)

k−1, k ∈ N},
where V1(z) = [zI−Ab]

−1B. Another Hambo basis is created by {U1(z)Gb(z)
k−1, k ∈

N}, where U1(z) = [zI − AT
b ]−1CT

b . In line with the forgoing, it follows that
{z−1U1(

1
z )G

k−1
b ( 1

z ), k ∈ N} is a basis for H⊥
2−. Now an interesting observation is

given by the following lemma.

Lemma 3.5. Let Gb(z), V1(z), U1(z) be defined as above. Then U1(z) and V1(z)
are related by z−1U1(

1
z ) = V1(z)Gb(

1
z ).

Proof. Using (2.9), it is easy to show that CT
b Gb(z) =

(
I − zAT

b

)
[zI − Ab]

−1Bb.
Substituting this relation in the expression U1(

1
z )Gb(z) yields U1(

1
z )Gb(z) = z[I −

zAT
b ]−1

(
I − zAT

b

)
[zI −Ab]

−1Bb = z[zI −Ab]
−1Bb = zV1(z).

Corollary 3.6. Let Gb(z) and V1(z) be defined as above. The set {V1(z)G
k
b (z),

k ∈ J} defines a basis, respectively, for H2− if J = N, for H⊥
2− if J = Z \ N, and for

L2(T) if J = Z.

Analogously the dual Hambo basis of Hnb
2− can be complemented with a set of

basis functions of Hnb⊥
2− such that a basis of Lnb

2 (T) is obtained. A dual basis of Hnb⊥
2−

is given by the functions W−t(z) =
(
NT ( 1

z )
)t
W0(z), t > 0, with W0(z) given by

CT
b z

−1 (z−1 I − DT
b )−1. The vector W0(z) can be related to W1(z) (the first basis

element of the dual basis of Hnb
2−) as follows.

Lemma 3.7. With N(z) a square inner function with orthogonal realization (Db,
Cb, Bb, Ab) and W1(z) = Bb(zI − Db)

−1, it holds that W0(z) = CT
b z

−1 (z−1 I −
DT

b )−1 = NT ( 1
z )W1(z).
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Proof. The proof is similar to that of Lemma 3.5. It is straightforward to show
that N(z)W0(z) = W1(z), using the fact that N(z) is inner.

As a consequence, the inner function N(z) generates a basis of Lnb
2 (T) in the same

way that Gb generates a basis of L2(T). We use that NT ( 1
z ) is the inverse of N(z).

Proposition 3.8. The set of vector functions {Wk(z), k ∈ J}, with Wk ∈
Lnb

2 (T), defined as Wk(z) = N(z)k−1Bb(zI−Db)
−1, constitutes an orthonormal basis

of Hnb
2− if J = N, of Hnb⊥

2− if J = Z \ N, and of Lnb
2 (T) if J = Z.

4. Signal and operator transforms. In this section, the fundamentals of the
transform theory that underlies expansions in the generalized basis are given. It is an
extension of the work that was started in [13, 39] and can be viewed as a generalization
of the Laguerre transform theory for signals and systems that was developed in [30]
and [29].

4.1. Signals. In the previous section, it was shown how �2 signals can be ex-
panded in terms of general rational orthonormal basis functions that are generated
by an inner function Gb(z) in balanced state space form.

It will turn out to be expedient to have a definition of the Hambo signal transform
that also applies to multivariable signals. Also, we will need a definition that not only
applies to the Hambo basis of �2(N) but also to the Hambo bases of �2(Z \ N) and
�2(Z), as discussed in section 3. Therefore, the definitions in this section will be given
for �2(J) signals, where J is either N,Z or Z \ N.

Consider a vector signal x(t) ∈ �n2 (J) such that x(t) =
[
x1(t) x2(t) · · · xn(t)

]T
.

Each scalar signal xi(t) can be expanded in the corresponding Hambo basis, yielding
the expansion sequences x̆i(k) which are elements of �nb

2 (J). Hence it holds that

x(t) =

∞∑
k=1

[
x̆1(k) x̆2(k) · · · x̆n(k)

]T
vk(t) =

∑
k∈J

x̆T (k)vk(t).(4.1)

Definition 4.1 (multivariable Hambo signal transform). Given a signal x(t) ∈
�n2 (J), its Hambo signal transform is defined as the matrix sequence {x̆(k)}k∈J , with
x̆(k) ∈ Rnb×n given by

x̆(k) = [[vk, x]].(4.2)

Furthermore, we define the λ-domain representation of the Hambo signal transform as

X̆(λ) =
∑
k∈J

x̆(k)λ−k.

Note that X̆(λ) is simply the Z-transform of x̆(k) with Z replaced by λ to avoid
confusion. As X̆(λ) is just a representation of the Hambo signal transform x̆(k) in an
alternative domain, it is also commonly called the Hambo signal transform [13].

For purposes of calculation, we will also need a definition for the Hambo transform
of a signal y(t) ∈ �1×nb

2 . This is defined through Definition 4.1 by using x(t) = yT (t)
and defining

Y̆ (λ) := X̆T (λ).

With the multivariable signal transform as defined above, the following isomorphic
relation holds.
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Proposition 4.2 (multivariable Hambo signal transform isomorphism). With
X(z) ∈ Lnx

2 (T) and Y (z) ∈ L
ny

2 (T), it holds that [[X,Y ]] = [[X̆T , Y̆ T ]].

Proof. The (i, j) element of [[X,Y ]] is equal to 〈Xi, Yj〉. By the isomorphism of the

Hambo signal transform for scalar signals, it holds that this is equal to 〈X̆i, Y̆j〉. Then,

with X̆(λ) and Y̆ (λ) as defined before, it follows that [[X,Y ]]= 1
2π

∫ 2π

0
X̆T (eiω)Y̆ (eiω)dω

= [[X̆(λ)
T
, Y̆ T (λ)]].

4.2. Systems. A system G(z) ∈ Ln
2 (T) is uniquely described by its impulse

response {g(k)} ∈ �n2 . We will use this property to define the Hambo signal transform
of a system as the Hambo signal transform of the impulse response of the system.

Definition 4.3. Consider a system G(z)∈Ln
2 (T) and a Hambo basis {Vk(z)}k∈Z.

The Hambo signal transform of G(z), denoted as Ğ(λ), is defined as

Ğ(λ) =

∞∑
k=−∞

ğ(k)λ−k, where ğ(k) = [[Vk, G]].

Example 4.4. Consider the Hambo signal transform of the basis function vector
G(z) = Vj(z). Obviously, in this simple case, the expansion vector coefficients are
given by ğ(k) = δ(k − j)I. Hence it holds that the Hambo signal transform of Vj(z)
is equal to λ−jI.

Another transform of the system G(z) that is closely related to the signal trans-
form but essentially different is the so-called Hambo operator transform, which de-
scribes the relationship between the signal transforms of the input and output signals
of a scalar stable and causal system.

Definition 4.5 (Hambo operator transform). Consider a system G(z) ∈ H2

and a Hambo basis {Vk(z)}k∈N, associated with the inner function Gb(z). We define

the Hambo operator transform of G(z), denoted by G̃(λ), as

G̃(λ) =

∞∑
τ=0

Mτλ
−τ ,(4.3)

where Mτ = [[V1(z)G
τ
b (z), V1(z)G(z)]].(4.4)

Proposition 4.6. Consider signals u(t), y(t) ∈ �2(N) and a system G(z) ∈ H2

such that y(t) = G(q)u(t). With G̃(λ) the Hambo operator transform of G(z), it holds

that Y̆ (λ) = G̃(λ)Ŭ(λ).

Proof. Let ŭ(k), y̆(k) be the expansion coefficients of u(t) and y(t). y̆(k) can be
expressed as y̆(k) = [[Vk, G

∑∞
j=1 ŭ

T (j)Vj ]] =
∑∞

j=1[[Vk, VjG]]ŭ(j) =
∑∞

j=1[[V1G
k−1
b ,

V1G
j−1
b G]]ŭ(j). Consider the inner product term for the case where j ≤ k. Use is

made of the fact that the adjoint of Gb(z) by its inner property is equal to G−1
b (z).

Hence [[V1G
k−1
b , V1G

j−1
b G]] = [[V1G

k−j
b , V1G]]. Now consider the inner product term

for the case where j > k. Then, with the same argument, one finds that it holds that
[[V1G

k−1
b , V1G

j−1
b G]] = [[V1, V1G

j−k
b G]]. This latter expression is equal to zero, which

follows from the fact that the elements of the transfer function V1(z) constitute an
orthonormal set which exactly spans the orthogonal complement in H2 of the shift-
invariant subspace Gb(z)H2. The right-hand side argument of the inner product is
an element of that subspace. Applying the signal transform of Definition 4.1 to y̆(k)
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(with J = N) reveals that it holds that

Y̆ (λ) =

( ∞∑
τ=0

Mτλ
−τ

)
Ŭ(λ).(4.5)

The parameters Mτ are matrices of dimension nb × nb. They can be viewed as
the Markov parameters of the multivariable transfer function G̃(λ). The expansion
coefficients {ğ(k)} and the Markov parameters {Mτ}, as given by Definitions 4.3
and 4.5, are closely connected through a linear relation; see [37, 8, 7] for details.

The Hambo operator transform of the system Gb(z) has a particularly simple
form. It holds for all U ∈ H2− that

Gb(z)U(z) =

∞∑
k=1

ŭT (k)Vk(z)Gb(z) =

∞∑
k=1

ŭT (k)Vk+1(z).

Hence, with Y (z) = Gb(z)U(z) =
∑∞

k=1 y̆
T (k)Vk(z), it follows that y̆(k) = ŭ(k−1)

for k > 1 and y̆(1) = 0. Therefore, it holds that M1 = I and Mτ = 0 for all τ �= 1,
and consequently

G̃b(λ) = λ−1I.(4.6)

We can hence conclude that a multiplication with Gb(z) in the Z-domain corre-
sponds to applying a canonical shift in the λ-domain.

Although the Hambo operator transform is defined only for SISO systems, there
is a simple multivariable case in which it can also be used. We will need it in the next
section.

Proposition 4.7. Consider a signal u(t) ∈ �m2 (J) and an SISO system G(z) ∈
H2. Let y(t) ∈ �m2 (J) be given by y(t) = G(q) · I u(t). Then it holds that Y̆ (λ) =

G̃(λ)Ŭ(λ).
Proof. Denoting the elements of U(z) and Y (z) as Ui(z) and Yi(z) according to

U(z) =
[
U1(z) U2(z) · · · Um(z)

]T
and Y (z) =

[
Y1(z) Y2(z) · · · Ym(z)

]T
, we have

that Yi(z) = G(z)Ui(z) for 1 ≤ i ≤ m. Then the Hambo signal transform of Yi(z)

satisfies, by definition of the Hambo operator transform, Y̆i(λ) = G̃(λ)Ŭi(λ). The
result then follows from the fact that

Y̆ (λ) =
[
Y̆1(λ) Y̆2(λ) · · · Y̆m(λ)

]
= G̃(λ)Ŭ(λ).

5. Operator transform expressions. As shown, the Hambo operator trans-
form of a system G(z) ∈ H2 is a causal LTI system. Furthermore, the transform of a
rational transfer function is again rational. We will now derive expressions by which
the operator transform can actually be computed. First it is shown that an expression
for G̃(λ) is obtained by making a variable substitution in the Laurent expansion of

G(z). Next it is shown how a state space realization of G̃(λ) can be derived on the
basis of a state space realization of G(z).

5.1. Variable substitution property. The Hambo operator transform, as de-
fined in Definition 4.5, can be obtained from the original transfer function G(z) ∈ H2

by applying a variable substitution in its Laurent expansion, which is given by

G(z) =

∞∑
τ=0

g(τ)z−τ .(5.1)

This variable substitution consists of a replacement of the shift operation z−1 by the
causal linear time-invariant operator N(λ).
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Proposition 5.1 (variable substitution property [39]). Let N(λ) be as in Propo-

sition 3.4. Then the Hambo operator transform G̃(λ) of a given system G(z) ∈ H2 is
equal to

G̃(λ) =

∞∑
τ=0

g(τ)Nτ (λ).(5.2)

With slight abuse of notation, (5.2) is sometimes stated as G̃(λ) = G(z)|z−1=N(λ) .
An immediate consequence of Proposition 5.1 is that the operator transform of the
canonical shift z−1 is equal to N(λ). This means that a shift in the time domain
corresponds to the application of the operator N(λ) in the signal transform domain.

Another immediate consequence of this proposition is that N(λ) and G̃(λ) are com-
muting operators. A third consequence of Proposition 5.1 is the following relation
between the Hambo signal transform and the Hambo operator transform.

Corollary 5.2. The Hambo signal transform Ğ(λ) and Hambo operator trans-

form G̃(λ) of a given system G(z) ∈ H2− are related through Ğ(λ) = G̃(λ)W0(λ),

with W0(λ) ∈ Hnb
2

⊥
equal to CT

b
1
λ ( 1

λ I−DT
b )−1, in accordance with Proposition 3.8.

Proof. As the functions {Wt(λ)}t∈N constitute the dual Hambo basis, Ğ(λ) satis-
fies Ğ(λ) =

∑∞
t=1 g(t)Wt(λ), with g(t) the impulse response coefficients of G(z). By

Proposition 3.4 and the fact that N(λ) is inner, we can write Ğ(λ) =
∑∞

t=1 g(t)N(λ)t ·
NT ( 1

λ )W1(λ). By Lemma 3.7 and Proposition 5.1, it then follows that Ğ(λ) =∑∞
t=1 g(t)N(λ)tW0(λ) = G̃(λ)W0(λ).

It was shown in [13] that, inversely, G(z) can also be obtained from G̃(λ) by
means of a variable substitution:

G(z) = zV T
1 (z) G̃(λ)W1(λ)λ

∣∣∣
λ−1=Gb(z)

.(5.3)

Using the multivariable signal transform Definition 4.1 one can establish an iso-
morphic relation that involves the Hambo operator transform.

Proposition 5.3 (Hambo operator transform isomorphism). Consider the Hambo
basis of L2(T), generated by an inner function Gb(z). Hence we have that Vk(z) =
V1(z)Gb(z)

k−1 and Wk(λ) = N(λ)k−1W1(λ). Then for all G1(z), G2(z) ∈ H2, k ∈ Z,

[[VkG1, VkG2]] = [[G̃T
1 , G̃

T
2 ]],(5.4)

and 〈G1, G2〉 = 〈G̃1Wk, G̃2Wk〉.(5.5)

Proof. We will prove both assertions for the case k = 1. The other cases follow
immediately from the inner property of Gb(z), and N(λ). By Proposition 4.2, it holds

that [[V1G1, V1G2]] = [[ ˘(V1G1)
T
, ˘(V1G2)

T
]]. The elements of the vector V1(z)Gk(z), k =

1, 2, are equal to Gk(z)Φ1,i(z), 1 ≤ i ≤ nb, where Φ1,i(z) are the first nb scalar basis
functions. The Hambo signal transform of Gk(z)Φ1,i(z) is, by definition of the opera-

tor transform, equal to G̃k(λ)Φ̆1,i(λ) = G̃k(λ)e
T
i λ

−1. By Definition 4.1, it then follows

that ˘(V1Gk) = G̃k(λ)λ
−1. Hence [[V1G1, V1G2]] = [[G̃T

1 (λ)λ−1, G̃T
2 (λ)λ−1]] = [[G̃T

1 , G̃
T
2 ]].

The second assertion is proved as follows. It holds that 〈G1, G2〉 = 〈G1z
−1, G2z

−1〉 =

〈 ˘(G1z−1), ˘(G2z−1)〉. The last equality follows from the isomorphism of the signal
transform. Using the fact that W1(λ) is the Hambo signal transform of z−1 and by
definition of the Hambo operator transform, the result follows.



1360 HEUBERGER, DE HOOG, VAN DEN HOF, AND WAHLBERG

5.2. Hankel operator representations. The Hankel operator associated with
an LTI system G(z) can be represented in a number of ways, depending on the (or-
thonormal) coordinate systems that are used for the input and output signal spaces.
The Hankel operator of a scalar system maps from �2(−∞, 0] to �2[1,∞). Usually,
the canonical bases of these spaces are employed to represent the input and output
signals. In that case, the Hankel operator can be represented as a Hankel matrix H
that contains the Markov parameters g(k), k > 0, of G(z), as Hi,j = g(i+ j−1). Now

define y =
[
y(1) y(2) · · · ]T , u =

[
u(0) u(−1) · · · ]T . Then it holds that

y = Hu.(5.6)

Alternative representations of the Hankel operator would be obtained if one were to
use other orthonormal bases for the representation of the input and output signals.
A particularly interesting case occurs when we use a Hambo basis for the output
space �2[1,∞) and the complementary Hambo basis for �2(−∞, 0] for the input space.
Consider the expansion of the output signal y(t) ∈ �2[1,∞) and the input signal u(t) ∈
�2(−∞, 0] in terms of a Hambo basis. We then obtain the coefficients y̆(k) = [[y, vk]]

T

with k ∈ N and ŭ(k) = [[u, vk]]
T with k ∈ Z\N. We collect these coefficients in column

vectors y̆, ŭ defined as

y̆T =
[
y̆T (1) y̆T (2) y̆T (3) · · ·] ,(5.7)

ŭT =
[
ŭT (0) ŭT (−1) ŭT (−2) · · ·] .(5.8)

Defining the block row vectors vk with k ∈ Z as

vk =


[
vk(1) vk(2) vk(3) · · ·

]
, k ≥ 1,[

vk(0) vk(−1) vk(−2) · · ·
]
, k < 1,

and defining Vf =
[
vT

1 vT
2 · · ·]T and Vp =

[
vT

0 vT
−1 · · ·]T , we can write

y̆ = Vfy and ŭ = Vpu.(5.9)

It is clear that the infinite dimensional matrices Vf and Vp are unitary (orthogonal)
matrices as their rows are orthogonal vectors. It hence follows that we can also
write y = VT

f y̆ and u = VT
p ŭ. Substituting this in (5.6) gives the relation VT

f y̆ =

HVT
p ŭ. Again using the fact that Vf is orthogonal, this can be rephrased as y̆ = H̃ŭ,

with H̃ = VfH VT
p . The matrix operator H̃ is an alternative representation of the

Hankel operator of G(z). If we partition the matrix H̃ in blocks of dimension nb ×nb

corresponding to the partitioning of ŭ and y̆, then we find that the (i, j) block element

equals H̃(i,j) = viH vT
−j+1, with vk the vector representations of the basis functions

vk as defined above. It is then clear that H̃(i,j) is equal to the matrix inner product
between Vi(z) and the Z-transform expression for the vector HvT

−j+1. This leads to
the following proposition.

Proposition 5.4. Let H̃ be the matrix representation of the Hankel operator of
a system G(z) ∈ H2, in terms of a Hambo basis associated with an inner function

Gb(z), such that y̆ = H̃ŭ, where y̆ and ŭ are as defined by (5.7) and (5.8). Let H̃

be partitioned in blocks of dimension nb × nb, and let H̃(i,j) denote the (i, j)th block
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element. Then it holds that H̃(i,j) = Mi+j−1, where Mk represents the kth Markov

parameter of G̃(λ), as defined in (4.4).
Proof. By definition of the Hankel map, the term HvT

−j+1 is the output of
the system G(z) in response to the input v−j+1 ∈ �nb

2 (−∞, 0], restricted to the
space of future signals �nb

2 [1,∞). In Z-transform notation, this output can be ex-

pressed as PH
nb
2−
G(z)V T

−j+1(z) = PH
nb
2−
G(z)G−j

b V T
1 (z). The last equality follows from

the fact that Vk(z) = Gk−1
b (z)V1(z) for all k ∈ Z. It then follows that H̃(i,j) =

[[Vi,PH
nb
2−
GGb

−jV1]] = [[Gi−1
b V1, GG

−j
b V1]]. Because Gb(z) is inner, this expression

simplifies to H̃(i,j) = [[Gi+j−1
b V1, GV1]], which is equal to Mi+j−1, as was established

earlier; see (4.4).

Proposition 5.4 shows that H̃ has a block Hankel form, which coincides with the
standard block Hankel matrix representation of the Hambo operator transform G̃(λ).
One consequence of this observation is that Hankel singular values and the McMillan
degree are invariant under Hambo operator transformation.

5.3. State space expressions for the Hambo operator transform and its
inverse. In this section, we will derive the expressions by which a minimal realization
of the Hambo operator transform can be obtained from a minimal state space realiza-
tion of the original system and vice versa. The derivation is based on the isomorphic
relation that exists between such state space realizations. We will first establish this
relation. Consider the (block) Hankel matrix representation H of the Hankel oper-
ator of an LTI system G(z). It is a well-known result from realization theory that
any full rank decomposition H = Γ∆ corresponds to a minimal realization of G(z)
[15, 17]. That is, there exists a minimal realization (A,B,C,D) of G(z) such that

Γ =
[
CT (CA)T (CA2)T · · ·]T and ∆ =

[
B AB A2B · · ·] . We define the transfer

functions Γ(z) ∈ Hn
2− and ∆(z) ∈ Hn

2−
⊥ as

Γ(z) =

∞∑
k=1

CAk−1z−k = C(zI −A)−1, ∆(z) =

∞∑
k=0

AkBzk = z−1 (z−1 I −A)−1B.

The following lemma establishes an important relation between these functions
and their counterparts in the transform domain.

Lemma 5.5. Consider a system G(z)∈RH2 with minimal realization (A,B,C,D).
Let Γ(z) and ∆(z) be defined as Γ(z) = C(zI − A)−1, ∆(z) = z−1 (z−1 I − A)−1B.

Then the Hambo operator transform G̃(λ) of G(z) has a minimal state space realization
(Ã, B̃, C̃, D̃) such that it holds that

C̃(λI − Ã)−1 = Γ̆T (λ) and λ−1 (λ−1 I − Ã)−1B̃ = ∆̆T (λ),(5.10)

where Γ̆(λ) and ∆̆(λ) are the (multivariable) Hambo signal transforms of Γ(z), re-
spectively ∆(z), as defined in Definition 4.3.

Conversely, any Hambo operator transform G̃(λ) with minimal state space real-
ization (Ã, B̃, C̃, D̃) has a preimage G(z) with minimal realization (A,B,C,D) such
that (5.10) holds.

Proof. From the analysis in the previous section, it follows that, given a full rank
factorizationH = Γ∆, a full rank factorization of H̃ can be obtained according to H̃ =
(VfΓ)(∆VT

p ). Denote the minimal state space realization of G̃(λ) that corresponds
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to this realization by (Ã, B̃, C̃, D̃). We then denote (VfΓ)(k) = C̃Ãk−1, k ≥ 1, and

(∆VT
p )(−k) = ÃkB̃, k ≥ 0. It holds that (VfΓ)(k) = vkΓ, k ≥ 1, and (∆VT

p )(k) =

∆vT
k , k < 1. With Γ(z) and ∆(z) as defined above, we then see that

(VfΓ)(k) = [[ΓT (z), Vk(z)]], k ≥ 1, and (∆VT
p )(k) = [[∆(z), Vk(z)]], k < 1,

where the last equation holds under the assumption that the realization of ∆(z)
is real. This shows, using (4.2), that {(VfΓ)(k)} and {(∆VT

p )(k)} constitute the

multivariable Hambo signal transforms of ΓT (z) and ∆(z), respectively. Since any
minimal realization of G(z) corresponds to a full rank factorization of H, the first
part of the lemma is proven. The last statement of the lemma follows from the fact
that the Hambo signal transform is a bijective map.

Lemma 5.5 is a very powerful result as it permits us to derive very compact
expressions for computing the Hambo operator transform and its inverse, using the
isomorphism relation for the multivariable Hambo signal transform given in Proposi-
tion 4.2.

Suppose that the realizations (A,B,C,D) and (Ã, B̃, C̃, D̃) are linked to each
other via the Hambo signal transform as described in Lemma 5.5. Let us denote
the controllability Gramians associated with these realizations as Xc and X̃c and
the observability Gramians as Xo and X̃o, respectively. Then, by the Hambo signal
transform isomorphism, it holds for the functions Γ(z) and ∆(z) that

Xo = [[ΓT (z),ΓT (z)]] = [[Γ̆T (λ), Γ̆T (λ)]] = X̃o,(5.11)

Xc = [[∆(z),∆(z)]] = [[∆̆(λ), ∆̆(λ)]] = X̃c.(5.12)

Using the Hambo signal transform isomorphism, we can now establish a matrix
inner product expression for the realization (Ã, B̃, C̃, D̃), as follows.

Proposition 5.6. With Γ(z) and (Ã, B̃, C̃, D̃) as defined in Lemma 5.5 and Xo

the controllability Gramian of this realization, it holds that[
Xo 0
0 I

] [
Ã B̃

C̃ D̃

]
=

[[[
ΓT (z)Gb(z)

V1(z)

]
,

[
ΓT (z)

V1(z)G(z)

]]]
.(5.13)

Proof. The system G̃T (λ) is described by the equation[
X(λ)λ
Y (λ)

]
=

[
ÃT C̃T

B̃T D̃T

] [
X(λ)
U(λ)

]
.

It holds that [[[
X(λ)
U(λ)

]
,

[
X(λ)λ
Y (λ)

]]]
=

[[[
X(λ)
U(λ)

]
,

[
X(λ)
U(λ)

]]] [
Ã B̃

C̃ D̃

]
.

Let the input u(t) be equal to eiδ(t), with ei the ith Euclidean basis vector of Rnb .
Then X(λ) = [λI − ÃT ]−1C̃T ei = Γ̆(λ)ei, and by Lemma 5.5 this last equation can
be written as[[[

Γ̆(λ)ei
ei

]
,

[
Γ̆(λ)eiλ

G̃T (λ)ei

]]]
=

[[[
Γ̆(λ)ei
ei

]
,

[
Γ̆(λ)ei
ei

]]] [
Ã B̃

C̃ D̃

]
.
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Gb GT✲ ✲

❄❄

✲u1 y1,1

x1,2

y1,2

x1,1

GT Gb
✲ ✲

❄❄

✲u2 y2,2

x2,2

y2,1

x2,1

Fig. 5.1. Systems for proof of Corollary 5.7.

Because this holds for all i such that 1 ≤ i ≤ nb, we can also write (after summation
of the latter equation over all i = 1, . . . , nb)[[[

Γ̆(λ)
I

]
,

[
Γ̆(λ)λ

G̃T (λ)

]]]
=

[[[
Γ̆(λ)
I

]
,

[
Γ̆(λ)
I

]]] [
Ã B̃

C̃ D̃

]
=

[
X̃o 0
0 I

] [
Ã B̃

C̃ D̃

]
.

The term on the left-hand side of this equation equals[[[
Γ̆(λ)λ−1

Iλ−1

]
,

[
Γ̆(λ)

G̃T (λ)λ−1

]]]
.

We observe that λ−1I is equal to the Hambo operator transform of Gb(z) (see (4.6)).
Further, λ−1I is the Hambo signal transform of V1(z), as was demonstrated in Ex-
ample 4.4. From Proposition 4.7 it then follows that λ−1I Γ̆T (λ) is the Hambo signal

transform of Gb(z) ·IΓT (z). Similarly, λ−1IG̃(λ) is the signal transform of V1(z)G(z).
Using the Hambo signal transform isomorphism (Proposition 4.2), it therefore holds
that [[[

Γ̆(λ)λ−1

Iλ−1

]
,

[
Γ̆(λ)

G̃T (λ)λ−1

]]]
=

[[[
ΓT (z)Gb(z)

V1(z)

]
,

[
ΓT (z)

V1(z)G(z)

]]]
.

Obviously, a dual formulation of this proposition that uses expressions involving
∆(z) and Xc is possible.

Proposition 5.6 can also be formulated in the form of a Sylvester equation.
Corollary 5.7. Consider a system G(z) ∈ RH2, with minimal realization

(A,B,C,D) and observability Gramian Xo. Then G̃(λ) has a minimal realization
(Ã, B̃, C̃, D̃) that satisfies the following Sylvester equation:[

AT CTCb

0 Ab

] [
XoÃ XoB̃

C̃ D̃

] [
A BBT

b

0 AT
b

]
+

[
CTDb

Bb

] [
C DBT

b

]
(5.14)

=

[
XoÃ XoB̃

C̃ D̃

]
.

Proof. The Sylvester equation is obtained by formulating (5.13) in the time do-
main using straightforward state space realizations of the transfer functions that ap-
pear in the inner product. Consider the systems shown in Figure 5.1. State equations
of these systems are[

x1,1(t+ 1)
x1,2(t+ 1)

]
=

[
AT CTCb

0 Ab

] [
x1,1(t)
x1,2(t)

]
+

[
CTDb

Bb

]
u(t)

and [
x2,1(t+ 1)
x2,2(t+ 1)

]
=

[
AT 0

BbB
T Ab

] [
x2,1(t)
x2,2(t)

]
+

[
CT

BbD
T

]
u(t),
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respectively. The solution of (5.13) is then equal to[[[
x1,1

x1,2

]
,

[
x2,1

x2,2

]]]
,

which results in (5.14).
Existence of a solution to this Sylvester equation (5.14) is guaranteed if the sys-

tems in the inner product expression in (5.13) are stable. This is true by assumption
for Γ(z) and G(z) and by definition for Gb(z) and V1(z).

Note that (5.14) can be simplified further in the case where Xo = I, i.e., when
the realization (A,B,C,D) is output balanced.

Using the Hambo signal transform isomorphism, it is equally simple to derive a
matrix inner product expression for the realization (A,B,C,D) that involves Γ̆(λ).

Proposition 5.8. With Γ(z) and (A,B,C,D) as defined in Lemma 5.5, it holds
that [

X̃o 0
0 1

] [
A B
C D

]
=

[[[
Γ̆T (λ)NT (λ)

WT
1 (λ)

]
,

[
Γ̆T (λ)

WT
1 (λ)G̃T (λ)

]]]
.(5.15)

Proof. The system GT (z) is described by the state equation[
X(z)z
Y (z)

]
=

[
AT CT

BT DT

] [
X(z)
U(z)

]
.

It holds that [[[
X(z)
U(z)

]
,

[
X(z)z
Y (z)

]]]
=

[[[
X(z)
U(z)

]
,

[
X(z)
U(z)

]]] [
A B
C D

]
.

Let the input u(t) be equal to δ(t). Then this last equation can be written as[[[
ΓT (z)

1

]
,

[
ΓT (z)z
GT (z)

]]]
=

[[[
Γ(z)
1

]
,

[
Γ(z)
1

]]] [
A B
C D

]
=

[
Xo 0
0 1

] [
A B
C D

]
.

The term on the left-hand side of this equation equals[[[
ΓT (z)z−1

z−1

]
,

[
ΓT (z)

GT (z)z−1

]]]
.

We observe that z−1 is equal to the inverse Hambo operator transform of N(λ) (as
follows from Proposition 5.1). At the same time, z−1 is the inverse Hambo signal
transform of W1(λ). Then it follows from Proposition 4.7 that z−1I Γ(z) is the
Hambo inverse signal transform of N(λ)Γ̆(λ). Similarly, by definition of the Hambo

operator transform, G(z)z−1 is then the inverse signal transform of G̃(λ)W1(λ). Using
the Hambo signal transform isomorphism (Proposition 4.2), it therefore holds that[[[

ΓT (z)z−1

z−1

]
,

[
ΓT (z)

GT (z)z−1

]]]
=

[[[
Γ̆T (λ)NT (λ)

WT
1 (λ)

]
,

[
Γ̆T (λ)

WT
1 (λ)G̃T (λ)

]]]
.

Again a dual formulation of this proposition is possible that uses expressions
involving ∆(z) and Xc. Expression (5.15) can also be put in Sylvester equation form.

Corollary 5.9. Consider a Hambo transform G̃(λ) of a system G(z) ∈ RH2,
with minimal state space realization (Ã, B̃, C̃, D̃) and observability Gramian X̃o. Then
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NT G̃T✲ ✲

❄❄

✲u3 y3,1

x3,2

y3,2

x3,1

G̃T NT✲ ✲

❄❄

✲u4 y4,2

x4,1

y4,1

x4,2

Fig. 5.2. Systems for proof of Corollary 5.9.

G(z) has a minimal state space realization (A,B,C,D) that satisfies the following
Sylvester equation:[

ÃT C̃TCT
b

0 DT
b

] [
X̃oA X̃oB
C D

] [
Ã B̃Bb

0 Db

]
+

[
C̃TAT

b

BT
b

] [
C̃ D̃Bb

]
(5.16)

=

[
X̃oA X̃oB
C D

]
.

Proof. The proof is similar to that of Corollary 5.7. Consider the systems shown
in Figure 5.2. State equations of these systems are[

x3,1(t+ 1)
x3,2(t+ 1)

]
=

[
ÃT C̃TCT

b

0 DT
b

] [
x3,1(t)
x3,2(t)

]
+

[
C̃TAT

b

BT
b

]
u(t)

and [
x4,1(t+ 1)
x4,2(t+ 1)

]
=

[
ÃT 0

BT
b B̃

T DT
b

] [
x4,1(t)
x4,2(t)

]
+

[
C̃T

BT
b D̃

T

]
u(t),

respectively. The solution of (5.15) is then equal to[[[
x3,1

x3,2

]
,

[
x4,1

x4,2

]]]
,

which results in (5.16).
Existence of a solution to this Sylvester equation (5.16) is guaranteed if the sys-

tems in the inner product expression in (5.15) are stable. That this is true for Γ̆(λ)
follows from the assumption that G(z) is stable and the fact that ΓT (z) is stable.

Consequently G̃(λ) is also stable. W1(λ) and NT (λ) are stable by definition.
Equation (5.16) can again be simplified further when (Ã, B̃, C̃, D̃) is output bal-

anced.
Note that formulas (5.14) and (5.16) look very similar. Also note that the for-

mulas are reciprocal: using a realization (A,B,C,D) in (5.14) results in a realization
(Ã, B̃, C̃, D̃), which, when used in (5.16), yields the original (A,B,C,D) again. This
follows from the fact that the functions ΓT (z) and Γ̆(λ) correspond uniquely through
the Hambo signal transform.

As stated, similar results as those given by Corollaries 5.7 and 5.9 can be given
using a controllability approach. We state the results here without proof. Details can
be found in [7].

Corollary 5.10 (Hambo system transform—controllability form [7]). Con-
sider a system G(z) ∈ RH2 with minimal state space realization (A,B,C,D) and

controllability Gramian Xc. Then its Hambo transform G̃(λ) has a minimal state



1366 HEUBERGER, DE HOOG, VAN DEN HOF, AND WAHLBERG

space realization (Ã, B̃, C̃, D̃) with controllability Gramian X̃c = Xc that satisfies the
following Sylvester equation:[

A 0
CT

b AT
b

] [
ÃXc B̃

C̃Xc D̃

] [
AT 0

BbB
T Ab

]
+

[
B

CT
b D

] [
DbB

T Cb

]
=

[
ÃXc B̃

C̃Xc D̃

]
.(5.17)

Corollary 5.11 (inverse Hambo system transform—controllability form [7]).

Consider a Hambo transform G̃ of a system G(z) ∈ RH2 with minimal state space
realization (Ã, B̃, C̃, D̃) and controllability Gramian X̃c. Then G(z) has a minimal
state space realization (A,B,C,D) with controllability Gramian Xc = X̃c that satisfies
the following Sylvester equation:[

Ã 0

CbC̃ Db

] [
AX̃c B

CX̃c D

] [
ÃT 0

BT
b B̃

T DT
b

]
+

[
B̃

CbD̃

] [
AT

b B̃
T CT

b

]
(5.18)

=

[
AX̃c B

CX̃c D

]
.

There are various formulas that can be derived in this context. For instance, it is
straightforward to derive a generic formula for D̃ that is a direct result of substituting
λ = ∞ in (5.2):

D̃ =
∞∑
k=0

g(k)Ak
b .(5.19)

An equivalent relation (see [7]) can be derived for Ã as defined by (5.14), (5.17) when
we define gb(k) as the impulse response sequence of Gb(z):

Ã =

∞∑
k=0

gb(k)A
k.(5.20)

This expression can be verified as follows. Define F =
∑∞

k=0 gb(k)A
k, and consider

the expression ATXoFA, where Xo is the observability Gramian of the realization
(A,B,C,D). It follows that

ATXoFA =

∞∑
k=0

gb(k)(A
TXoA)Ak =

∞∑
k=0

gb(k)(Xo − CTC)Ak

= XoF − CTC ·Db −
∞∑
k=1

CTCbA
k−1
b BbCA

k

= XoF − CTDbC − CTCY A, where AbY A+BbC = Y.

Evaluation of the terms in (5.14) yields that it must hold that Y = C̃ and F = Ã, as
defined by (5.14). Analogously, evaluation of AFXcA

T shows that F = Ã, as defined
by (5.17).

6. Properties of Hambo transforms. We proceed with demonstrating a num-
ber of interesting properties of Hambo transforms that ensue from the theory devel-
oped in the preceding sections. These properties are of interest because they are
instrumental to the application of the basis function theory in the context of system
modelling [39, 8, 7].
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6.1. Calculation rules. The Hambo operator transform obeys the following
rules:

if H(z) = (αG1(z) + βG2(z)), then H̃(λ) = αG̃1(λ) + βG̃2(λ),(6.1)

G̃1G2(λ) = G̃1(λ)G̃2(λ) = G̃2(λ)G̃1(λ),(6.2)

G̃−1(λ) =
(
G̃(λ)

)−1
,(6.3)

where G1(z), G2(z), G(z), G−1(z) ∈ H2, and α, β ∈ R.
Proof. (6.1): The proof follows trivially from the definition of the Hambo operator

transform and the linearity of the Hambo signal transform.
(6.2): Let Y (z) = G1(z)G2(z)U(z). Define X(z) = G2(z)U(z). By definition of

the operator transform, it holds that Y̆ (λ) = G̃1(λ)X̆(λ) = G̃1(λ)G̃2(λ)Ŭ(λ). Since
this holds for all U(z), Y (z), (6.2) follows. The second equality follows from the fact
that the scalar systems G1(z) and G2(z) commute.

(6.3): Assuming that G−1(z) ∈ H2, we have by definition of the Hambo transform

that Ŭ(λ) = G̃−1(λ)Y̆ (λ). We also know that Y̆ (λ) = G̃(λ)Ŭ(λ). Hence (G̃(λ))−1 =

G̃−1(λ).
On the basis of these properties, it holds, for instance, that if H(z) = (G(z)(1 +

G(z))−1), then H̃(λ) = G̃(λ)(I + G̃(λ))−1 = (I + G̃(λ))−1G̃(λ), assuming that (1 +
G(z))−1 ∈ H2.

These properties thus imply that parallel and series interconnections of systems
remain unchanged under Hambo operator transformation. Feedback interconnections
also remain unchanged under the condition that the inverse taken is also in H2. It
follows immediately that the same goes for linear fractional transformations (LFT),
where we assume a pointwise definition of the operator transform for multivariable
systems, i.e., [

˜G11(z) G12(z)
G21(z) G22(z)

]
=

[
G̃11(z) G̃12(z)

G̃21(z) G̃22(z)

]
.

6.2. Pole locations. It was established in section 5.2 that the McMillan degree
of a Hambo operator transform is equal to the McMillan degree of the original system.
Hence the number of poles of G̃(λ) is equal to that of G(z). The locations of the poles

of G̃(λ) are determined as follows.
Proposition 6.1. Consider a system G(z) ∈ RH2 and a Hambo basis generated

by an inner function Gb(z). If G(z) has a pole at z = ai, its Hambo operator transform

G̃(λ) will have a pole at µi = Gb(
1
ai

) = G−1
b (ai).

Proof. This assertion can be proved on the basis of (5.20). That is, if G(z)

has a state space realization (A,B,C,D), G̃(λ) will have a state space realization
(Ã, B̃, C̃, D̃) with

Ã =

∞∑
k=0

gb(k)A
k,(6.4)

where gb(k) represents the impulse response sequence of Gb(z). Consider any eigen-
value ai of A and a corresponding eigenvector xi ∈ Cn, Axi = xiai. If we mul-
tiply (6.4) from the right with xi, we find Ãxi = xi

∑∞
k=0 gb(k)a

k
i = xiGb(

1
ai

) =

xiG
−1
b (ai). Therefore, Ã has eigenvalue Gb(

1
ai

) with corresponding eigenvector
xi.
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Corollary 6.2. The Hambo operator transform G̃(λ) of a system G(z) ∈ H2 is
stable.

Proof. By the maximum modulus theorem [34] it holds that for an inner func-
tion Gb(z), |Gb(z)| < 1 outside the unit disk. Hence |Gb(

1
a )| < 1 for all a < 1.

Consequently, G̃(λ) is stable if G(z) is stable.

Corollary 5.2 showed that for G(z) ∈ H2−, Ğ(λ) = G̃(λ)W0(λ). Since this must
be an element of Hnb

2 , it therefore must hold that the unstable pole of W0 which lies

at 1
Db

is cancelled by a zero at 1
Db

of det G̃(λ), and hence we can immediately conclude

that the poles of Ğ(λ) constitute a subset of the poles of G̃(λ).

Corollary 6.3. Let G(z) ∈ H2− have McMillan degree n with poles at ai with
1 ≤ i ≤ n. Then the Hambo signal transform Ğ(λ) is stable, and its poles form a
subset of {µi}1≤i≤n with µi = Gb(

1
ai

). Hence the McMillan degree of Ğ(λ) is smaller
than or equal to n.

On the basis of Corollary 6.3, one can make the following statement about the
convergence rate of an expansion in terms of Hambo basis functions [13].

Proposition 6.4. Let a Hambo basis function expansion of G(z) ∈ H2− be
given by G(z) =

∑
k∈N

ğT (k)Vk(z) =
∑

k∈N

∑nb

i=1 ğ(k)iΦk,i(z). Further, let G(z)
have McMillan degree n and poles ai, 1 ≤ i ≤ n. Then with µ defined as µ =
max1≤i≤n |Gb(

1
ai

)|, it holds that there exists a positive constant c ∈ R such that

max1≤i≤nb
|ğ(k)i| ≤ cµk−1.

This is simply a result of the well-known fact that the convergence of an impulse
response sequence is dominated by the pole with the largest modulus. If the poles of
G(z) are a subset of the poles ξj , 1 ≤ j ≤ nb, of Gb(z), then it holds that Gb(

1
ai

) = 0
for 1 ≤ i ≤ n. Hence it follows that in this case ğ(k) = 0 for all k > 1, and the basis
function expansion converges to zero in one step. This illustrates the mechanism
that the convergence becomes very fast when the poles in the basis generating inner
function lie close to the poles of G(z).

6.3. Eigenstructure of Hambo operator transforms. In this section, we
analyze some of the structural properties of Hambo operator transforms. A direct
relation between the eigenvalues of a Hambo operator transform G̃(λ) and its pre-

image G(z) is established. It is further shown how G̃(λ), evaluated on the unit
circle, can be diagonalized by means of a similarity transformation with an orthogonal
matrix, thus revealing information about the singular values of the Hambo operator
transform. We first observe the following result which was previously shown to hold
in [43, 44].

Lemma 6.5. Given a Hambo basis generating inner function Gb(z) and its cor-
responding dual basis generating inner function N(λ), for z �= 0

zV T
1 (z) N(λ)|λ−1=Gb(z)

= V T
1 (z).(6.5)

Proof. The proof follows by direct evaluation of N(Gb(z))V1(z) using Gb(z) =
Cb(zI −Ab)

−1Bb +Db, making the assumption that z /∈ σ(Ab):

N(Gb(z))V1(z) =
(
Ab +Bb(Gb(z)−Db)

−1Cb

)
(zI −Ab)

−1Bb

= Ab(zI −Ab)
−1Bb +Bb

(
Cb(zI −Ab)

−1Bb

)−1
Cb(zI −Ab)

−1Bb

= Ab(zI −Ab)
−1Bb +Bb = V1(z)z.
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By the inner property of N(λ) and Gb(z), this latter equation can be rephrased as
(6.5). Since Ab has only a finite number of eigenvalues, continuity shows that the
result is valid for all z ∈ C.

We see that for z �= 0, V T
1 (z) is a left eigenvector of N(λ)|λ−1=Gb(z)

, with z−1

the corresponding eigenvalue. This has the following consequence.
Proposition 6.6. Consider a Hambo basis generated by the inner function Gb(z)

and a transfer function G(z) ∈ H2. Then the Hambo operator transform G̃(λ) satisfies

V T
1 (z) G̃(λ)

∣∣∣
λ−1=Gb(z)

= G(z)V T
1 (z)(6.6)

for all z �= 0.
Proof. It follows by direct substitution of Lemma 6.5 in Proposition 5.1 that

V T
1 (z) G̃(λ)

∣∣∣
λ−1=Gb(z)

=

∞∑
τ=0

g(τ)V T
1 (z) N(λ)τ |λ−1=Gb(z)

=

∞∑
τ=0

g(τ)z−τV T
1 (z).

Consider a certain fixed value of λ denoted as λ0. Because Gb(z) is an in-
ner function of McMillan degree nb, the equation λ0

−1 = Gb(z) will have nb so-
lutions which we will denote as zi. Defining the matrix X({zi}) as X({zi}) =[
V1(z1) V1(z2) · · · V1(znb

)
]
, one can write, using Proposition 6.6, XT ({zi})G̃(λ0) =

diagG(zi)X
T ({zi}). If the solutions zi to λ0

−1 = Gb(z) are distinct, it holds that
V T

1 (zi)V1(
1
zj

) = 0 for zi �= zj . This follows directly from the following result, which

is known as the Christoffel–Darboux formula [6, 4] for the Hambo basis. It gives
an expression for the reproducing kernel of the subspace spanned by the functions
Φ1,i(z), 1 ≤ i ≤ nb, which is equal to K(z, z′) = V T

1 (z′)V1(
1
z ).

Lemma 6.7 (Christoffel–Darboux formula). Consider a Hambo basis generating
inner function Gb(z). It holds for all z1, z2 ∈ C, z1 �= z2, that

V T
1 (z1)V1

(
1

z2

)
=

Gb(z1)Gb(
1
z2

)− 1

1− z1
z2

.(6.7)

Proof. The proof follows from the properties of the orthogonal realization (Ab, Bb,
Cb, Db). Using that zV1(z) = AbV1(z) +Bb, we have that

z1V
T
1 (z1)V1

(
1

z2

)
1

z2
= (V T

1 (z1)A
T
b +BT

b )

(
AbV1

(
1

z2

)
+Bb

)
= V T

1 (z1)A
T
b AbV1

(
1

z2

)
+ V T

1 (z1)A
T
b Bb +BT

b AbV1

(
1

z2

)
+BT

b Bb.

Substituting AT
b Ab = I − CT

b Cb, A
T
b Bb = −CT

b Db, and BT
b Bb = 1−DT

b Db results in

z1V
T
1 (z1)V1

(
1

z2

)
1

z2
= V T

1 (z1)V1

(
1

z2

)
−Gb(z1)Gb

(
1

z2

)
+ 1,

which can be rephrased as (6.7).
We now have that, if the solutions zi to λ−1

0 = Gb(z) are distinct, it holds that

XT ({zi})G̃(λ0)X

({
1

zi

})
= diagG(zi) diag V

T
1 (zi)V1

(
1

zi

)
.
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The case where |λ0| = 1 is a simple but important situation for which it holds that
the solutions zi to λ−1

0 = Gb(z) are all distinct. This follows directly from the fact
that any scalar inner function with McMillan degree nb can be written as a Blaschke

product Gb(z) = ±∏nb

k=1
1−ξ∗k
z−ξ , and thus the map eiω → Gb(e

iω) will go through the
unit circle nb times as ω goes from 0 to 2π, and hence there are nb different solutions
0 ≤ ω1 < ω2 < · · · < ωnb

< 2π with Gb(e
iωk) = 1.

A further consequence of the observation that V T
1 (z)V1(

1
z ) > 0 if |z| = 1 is that

for |λ0| = 1, the matrix X({ 1
zi
})(diag

√
V T

1 (zi)V1(
1
zi

))−1 is an orthogonal matrix.

This brings us the following diagonal decomposition of G̃(λ0).
Proposition 6.8. Let zi, with 1 ≤ i ≤ nb, be the solutions to λ−1

0 = Gb(zi) with

|λ0| = 1. Then, defining R = diag
√
V T

1 (zi)V1(
1
zi

), it holds that

R−1XT ({zi})G̃(λ0)X

({
1

zi

})
R−1 = diagG(zi).

X({ 1
zi
})R−1 is an orthogonal matrix. Hence the singular values of G̃(λ0) are equal

to |G(zi)|.
This proposition also shows that G̃(λ) is Hermitian when |λ| = 1.

6.4. Norm invariance under Hambo operator transformation. It was
shown before that the Hambo transforms of scalar stable finite dimensional LTI
systems are again stable finite dimensional LTI systems, albeit that they have in-
put/output dimension nb × nb. For the particular case of the Hambo operator trans-
form, it was further shown that the McMillan degree, Hankel singular values, and
�2-gain are also invariant under Hambo operator transformation. This leads to the
following observations.

Corollary 6.9. The Hankel and H∞-norms of a system G(z) ∈ H∞ are in-
variant under Hambo operator transformation.

The assertion for the Hankel norm follows from invariance of the Hankel singu-
lar values. Invariance of the H∞-norm follows from the fact that the H∞-norm is
equal to the �2-gain. Alternatively, it follows from Proposition 6.8, which shows that
supω∈[0,2π) σ̄(G̃(eiω)) = supω∈[0,2π) |G(eiω)|. Given the definition of the Hambo oper-
ator transform, it is not surprising that these norms are invariant as they are both
norms that are induced by the �2-norm for signals, which is invariant under Hambo
signal transformation as follows, e.g., from Proposition 4.2. It is important to take
notice of the fact that the H2-norm is not invariant under Hambo operator transfor-
mation. On the basis of Proposition 5.3, we can, however, conclude the following.

Corollary 6.10. The H2-norm of the Hambo operator transform of G(z) ∈ H2

satisfies

‖G̃‖2 = ‖VkG‖2 ∀k ∈ Z.

Proof. The proof follows by taking the trace of both sides of (5.4) with G1(z) =
G2(z) = G(z).

7. Extensions and derivatives. In this section, we briefly discuss some closely
related subjects in the context of the Hambo transform theory.

Time-varying transforms. In [7] a more generalized transform theory is developed,
where the transforms are directly based on the Takenaka–Malmquist functions, as
discussed in section 2. The main difference with the Hambo transforms is that the
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transforms for the generalized case turn out to be scalar time-varying operators instead
of multivariable time-invariant systems.

Multivariable systems. In this paper, the Hambo operator transform has been
restricted to the class of scalar systems. An important issue here is that for scalar
systems the transformed system turns out to be an element of Hnb×nb

2 . While it
is straightforward (see, e.g., [25, 7]) to define Hambo transforms for multivariable
p×m systems, the transform will blow up to dimensions pnb ×mnb. An alternative
method which does not increase the input/output dimension, using a time-varying
transformation, is discussed in [7].

Unstable systems. This paper primarily considers stable systems. It is not difficult
to extend the transformation formulas of section 5.3 to unstable systems as well. In
fact, the same formulas are valid with the exception of systems that contain poles
that are reciprocals of basis poles. The problem in the latter case is that the resulting
transform may be a noncausal system. This is explained by the following example for
the Laguerre basis functions.

Let a be the (stable) pole of the Laguerre basis functions (2.4), and let G(z) ∈ H⊥
2

be given byG(z) = 1
z−1−a . The Hambo transform ofG(z) can be calculated with (5.2),

using that N(λ) = 1+aλ
λ+a . This results in a noncausal G̃(λ) = λ−a

1+a2 . So, while the
Hambo transform is still well defined, the state space formulas cannot be used as is.

Realization. In [37, 8, 7], the problems of exact and partial realization in terms
of Hambo functions have been solved. This concerns the situation where a sequence
of expansion coefficients {ğ(k), k = 1, . . . , N} is given and a system G(z) of minimal
degree is sought such that the first N expansion coefficients of G(z) coincide with the
given set. Such a situation typically arises in an identification setting, as described in
[39]. In fact, the state space relations described in section 5.3 are a direct spin-off of
this research.

Frequency warping. The variable substitution of (5.3) is sometimes referred to as a
frequency transformation, as it maps T to T. With z = eiω and λ = eiϑ, it holds that
this transformation, defined as ϑ = β(ω), constitutes a continuously differentiable
nondecreasing (hence bijective) mapping from ω ∈ [0, 2π) to ϑ ∈ [0, 2nbπ). The
properties of this β mapping, and in particular its inverse β−1, are analyzed in [35],
where it is used in a frequency domain approach to Hambo basis function modelling.
A discrete set of equidistantly distributed frequency points in the ϑ domain is mapped
by β−1 to a nonequidistantly distributed set of frequency points in the ω domain. This
frequency distortion, or “warping” property, is exploited in [41] for the case nb = 1 to
enable the application of the fast Fourier transform (FFT) algorithm to nonuniformly
spaced samples of a discrete time Fourier transform (DTFT).

(Future) applications. The theory on Hambo transforms proved to be a powerful
tool in the derivation of variance expressions for identification in terms of orthogonal
basis functions [39]. Furthermore, as stated before, this theory has been instrumental
in the derivation of approximate realization algorithms that are based on expansions
in orthonormal basis functions. In [7] it is shown that these algorithms can also
be used to solve certain classes of interpolation problems. Other promising future
directions for use of the transform theory are, for instance, the application of system
identification in the transform domain, extending the results of [40, 11, 10], and control
design in the transform domain, utilizing the property that any linear system can be
transformed into a system with all poles located at the origin.

8. Conclusions. In this paper, we have analyzed a signals and systems trans-
form that is induced by the Hambo functions. These functions, which are a special
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case of the Takenaka–Malmquist functions, are induced by the balanced states of
scalar inner (stable all-pass) functions and encompass the classical pulse, Laguerre,
and Kautz functions. The induced signals and systems transforms generalize the
Z-transform and the Laguerre transform to a multidimensional representation. The
transforms have been analyzed in detail, providing insight into their structural prop-
erties. Explicit and efficient algorithms have been provided that enable the calculation
of minimal state space realizations of the operator transform and its inverse.
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