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Abstract— In oil production waterflooding is a popular re-
covery technology, which involves the injection of water into
an oil reservoir. Studies on model-based dynamic optimization
of waterflooding strategies have demonstrated that there is
a significant potential to increase life-cycle performance, de-
termined using an economic objective function. However, in
these studies the additional desire of many oil companies to
maximize daily production is generally neglected. To resolve
this, a lexicographic optimization structure is proposed that
regards economic life-cycle performance as primary objective
and daily production as secondary objective. The existence of
redundant degrees of freedom allows for the optimization of
the secondary objective without compromising optimality of
the primary objective.

I. INTRODUCTION

Oil is produced from subsurface petroleum reservoirs. In

these reservoirs the oil is contained in the interconnected

pores of the reservoir rock under high pressure and tem-

perature. The depletion process of a reservoir generally

consists of two production stages. In the primary production

stage the reservoir pressure is the driving mechanism for

the production. During this phase, the reservoir pressure

drops and production gradually decreases. In the secondary

production stage liquid (or gas) is injected into the reservoir

using injection wells. The most common secondary recovery

mechanism involves the injection of water and is referred to

as waterflooding. It serves two purposes: sustaining reservoir

pressure and sweeping the oil out of pores of the reservoir

rock and replacing it by water.

Due to heterogeneity of the reservoir rock, the flowing

fluids do not experience the same resistance at different

points and in different directions in the reservoir. As a

result, the oil-water front may not move uniformly towards

the production wells, but has a rather irregular shape as

depicted schematically in Figure 1. Due to this phenomenon

- referred to as fingering - the oil-water front may reach the

production wells while certain parts of the reservoir are not

be properly drained. The produced water must be disposed of
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Fig. 1. Process of waterflooding using a (horizontal) injection and
production well. The irregular-shaped oil-water front is a result of the
heterogeneous nature of the reservoir, after [1].

in an environmentally friendly way, bringing along additional

production costs. At some point the production is no longer

economically viable and the wells are closed (shut-in). At

the end of the life of the reservoir all production wells are

shut-in, while large amounts of oil may still be present in

the reservoir.

Although the injection and production rates of the wells

can be manipulated dynamically, they are generally fixed at

the maximum capacity of the wells until they are shut-in.

Replacing this reactive waterflooding strategy by a dynamic,

more proactive one can vastly improve sweep efficiency.

Different optimization studies have demonstrated using a

numerical reservoir model that there is a potential increase

possible of up to 15% [1], [2]. In these optimization studies

the objective function is usually of an economic type, most

often Net Present Value (NPV), evaluated over the life of the

reservoir.

Although many oil companies acknowledge the need for

improving economic efficiency over the life of the water-

flooding project, many of them prefer maximal daily produc-

tion as objective, due to the uncertainty in future economic

circumstances. These two objectives, the long-term (life-

cycle) objective and the short-term (daily) objective, lead to

different, generally conflicting waterflooding strategies.

The goal of this paper is to address the problem of multiple

economic objectives in the optimization of oil recovery from

a petroleum reservoir. To that end, a lexicographic optimiza-

tion structure is proposed that requires a prioritization of the

objectives.

This paper proceeds as follows. In Section II the properties

and characteristics of the reservoir model are described. In

Section III the life-cycle optimization problem is presented

and a lexicographic optimization procedure is proposed. Sec-
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tion IV deals with identifying redundant degrees of freedom

in the optimization problem. The lexicographic optimization

procedure is applied to a 3D reservoir model in Section V.

Finally, in Section VI the results are discussed and alternative

approaches are proposed.

II. RESERVOIR MODELING

Reservoir simulators use conservation of mass and mo-

mentum equations to describe the flow of oil, water or gas

through the reservoir rock. For simplicity reasons, in the oil

reservoirs models used within this work only the oil and

water phase are assumed to be present.

The mass balance is expressed as follows:

∇(ρiui)+
∂

∂ t
(φρiSi) = 0, i = o,w, (1)

where t is time, ∇ the divergence operator, φ is the porosity

(volume fraction of void space), ρi is the density of the phase

i, ui the superficial velocity and Si the saturation, defined as

the proportion of the pore space occupied by phase i.

Conservation of momentum is governed by the Navier-

Stokes equations, but is normally simplified for low velocity

flow through porous materials, to be described by the semi-

empirical Darcy’s equation as follows:

ui = −k
kri

µi
∇pi, i = o,w, (2)

where pi is the pressure of phase i, k is the absolute

permeability, kri is the relative permeability and µi is the

viscosity of phase i. The permeability k is an inverse measure

of the resistance a fluid (or gas) experiences flowing through

the porous medium. The relative permeability kri relates

to the additional resistance phase i experiences when other

phases are present, due to differences in viscosity. As a result,

it is a strongly non-linear function of the saturation Si. In

eq. (2) gravity is discarded for simplicity reasons. However,

within the 3D example presented in this paper, gravity does

play a role. For a more complete description of Darcy’s

equation we refer to literature [3].

Substituting (2) into (1) results into 2 flow equations with

4 unknowns, po, pw, So and Sw. Two additional equations are

required to complete the system description. The first is the

closure equation requiring that the sum of phase saturations

must equal 1:

So +Sw = 1 (3)

Second, the relation between the individual phase pressures

is given by the capillary pressure equation:

pcow(Sw) = po − pw (4)

Common practice in reservoir simulation is to substitute (3)

and (4) into the flow equations, by taking the oil pressure po

and water saturation Sw as primary state variables:

∇(λ̃o∇po) =
∂

∂ t
(φρo · [1−Sw]) , (5)

∇

(

λ̃w∇po − λ̃w
∂ pcow

∂Sw
∇Sw

)

=
∂

∂ t
(φρwSw) , (6)

where λ̃o = k kro
µo

and λ̃w = k krw
µw

are the oil and water

mobilities. Flow equations (5) and (6) are defined over the

entire volume of the reservoir. It is assumed that there is no

flow across the boundaries of the reservoir geometry over

which (5)-(6) is defined (Neumann boundary conditions).

Due to the complex nature of oil reservoirs, (5)-(6) gener-

ally cannot be solved analytically, hence they are evaluated

numerically. To this purpose the equations are discretized

in space and time. The discretization in space leads to a

system built up of a finite number of blocks, referred to as

grid blocks. This results in the following state space form:

V(xk) ·xk+1 = T(xk) ·xk +qk, x0 = x̄0, (7)

where k is the time index and x is the state vector

containing the oil pressures (po) and water saturations (Sw)

in all grid blocks. Vector x̄0 contains the initial conditions,

which are assumed to be known. In the discretization of (5)-

(6), the units are converted from [ kg

m3s
] to [m3

s ]. In (7) a source

vector qk is added to model the influence of the wells on

the dynamic behavior of the reservoir. The source terms are

usually represented by a so-called well model, which relates

the source term to the pressure difference between the well

and grid block pressure:

q
j
k = w j · (p

j
bh, k − p

j
k), (8)

where pbh, k is the well’s bottom hole pressure, j the index

of the grid block containing the well and p
j
k the grid block

pressure in which the well is located. The term w is a well

constant which contains the well’s geometric factors and the

rock and fluid properties of the reservoir directly around the

well.

The geological properties inside each grid block are as-

sumed to be constant. The strongly heterogeneous nature

of the reservoir can be characterized by assigning differ-

ent property values to each of the grid blocks. Usually a

very large number of grid-blocks is required (102 −106) to

adequately describe the fluid dynamics of a real petroleum

reservoir.

The reservoir simulations used within this study are per-

formed using Shell’s in-house reservoir simulation software.

III. WATERFLOODING OPTIMIZATION PROBLEM

Flooding a reservoir with water to increase oil production

is essentially a batch process, with the additional charac-

teristic that there is no repetition involved. As performance

is evaluated at the end of the process and the very long

time constants associated with the nonlinear dynamics, a

receding horizon approach will most likely not result in

optimal depletion of a reservoir. Dynamic optimization over

the entire life of the reservoir is required which can be

expressed by the following mathematical formulation:

max
u

J(u), (9)

s.t. xk+1 = f(xk,uk) , k = 1, ..,K, x0 = x̄0, (10)

g(u) ≤ 0 (11)
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where u is the input trajectory, f represents the system

equations as described in (7) and x̄0 is a vector containing the

initial conditions of the reservoir. The inequality constraints

g(u) relate to the capacity limitations of the wells.

The objective function J is of an economic type, generally

Net Present Value:

J =
K

∑
k=1

[

ro ·qo,k − rw ·qw,k − rin j ·qin j,k

(1+b)
tk
τt

·∆tk

]

, (12)

where ro is the oil revenue [ $
m3 ], rw the water production

costs [ $
m3 ] and rin j the water injection costs [ $

m3 ], which are all

assumed constant. K represents the total number of time steps

k of a fixed time span and ∆tk the time interval of time step k

in [day]. The term b represents the discount rate for a certain

reference time τt . The terms qo,k, qw,k and qin j,k represent

the total flow rate of respectively produced oil, produced

water and injected water at time step k in [ m3

day ]. This type

of economic objective functions does not necessarily provide

a unique solution to the optimization problem. Although it

relate to realistic economic criteria, (12) may well cause ill-

posedness.

A number of methods are available for dynamic opti-

mization on large scale problems [4], [5], [6]. Although

the capacity of simultaneous methods to handle large-scale

problem has increased considerably over the recent years,

models of order 106 are still difficult to solve in this manner.

Although sequential methods generally require repeated nu-

merical integration of the model equations, only the control

vector is parameterized and as a result can deal with larger

problems. Secondly, due to the fact that the flooding process

is very slow, much time is available to perform the usually a

large number of required simulations. However, the required

simulation time may still become unfeasible when a large

number of control parameters are used, unless a method is

available to efficiently calculate the gradients of the objective

function with respect to the control parameters. This can

be done by integration of the adjoint equations or directly

through sensitivity equations of model equations.

In the reservoir simulation package used within this work,

the adjoint equations are implemented to calculate the gra-

dients. For simplicity reasons, a Steepest Ascent (SA) algo-

rithm is adopted to determine improving control parameters.

A. Lexicographic optimization

In the life-cycle waterflooding problem as expressed by (9)

- (11) the desire of many oil companies to maximize short-

term (daily) production is discarded. A balanced objective

provides a possibility to address both objectives in a single

function. However, finding an suitable weighting between

the objectives may prove to be difficult. Alternatively, we

propose a lexicographic optimization structure that requires

a prioritization of the multiple objectives, as described in

[7] and [8]. In this structure, optimization of a secondary

objective function J2 is constrained by the requirement of the

primary objective function J1 to remain close to its optimal

value J∗1 . This structure can be expressed mathematically as

follows:

max
u

J2(u), (13)

s.t. xk+1 = f(xk,uk) , k = 1, ..,K, x0 = x̄0 (14)

g(u) ≤ 0 (15)

J∗1 − J1(u,x) ≤ ε (16)

where ε is arbitrarily small compared to J∗1 . Solving (13) -

(16) requires the knowledge of J∗1 , which is obtained through

solving optimization problem (9) - (11).

IV. REDUNDANT DEGREES OF FREEDOM

In [9] it was observed that significantly different optimized

waterflooding strategies result in nearly equal values in NPV.

The authors concluded that the flooding optimization prob-

lem is ill-posed and contains many more control variables

than necessary. This suggests that optimality of an economic

life-cycle objective in waterflooding optimization does not

fix all degrees of freedom (DOF) of the control variable

space U , i.e. there exist redundant DOF in the optimization

problem that - when perturbed - do not change the value of

the objective function. In [10] similar results for economic

dynamic optimization of plant-wide operation were found.

A consequence of these redundant DOF is that even

if ε in (16) is equal to 0, DOF are left to improve the

secondary objective function J2. A straightforward way of

investigating this is to imbed (16) as an equality constraint in

the adjoint formulation by means of an additional Lagrange

multiplier. Unfortunately, the system of adjoint equations is

at this point not capable of dealing with (additional) state

constraints. Alternatively, unconstrained gradient information

can be used to investigate the redundant DOF, as described

in the next section.

A. Quadratic approximation of the objective function

A solution u for which no constraints are active is an

optimal solution u∗ if and only if the gradients of J with

respect to u are zero, i.e. ∂J
∂u

= 0. As a result, at u∗

the gradients do not provide any information on possible

redundant degrees of freedom under the optimality condition

on J.

Second-order derivatives of J with respect to u are col-

lected in the Hessian matrix H. If H is negative-definite, the

considered solution u is an optimal solution, but no DOF

are left when the optimality condition on J holds. If H

is negative-semidefinite it means that the Hessian does not

have full rank. An orthonormal basis B for the indetermined

directions of H can than be obtained through a singular value

decomposition:

H = U ·Σ ·V (17)

The orthonormal basis B consists of those columns of

V that relate to singular values of zero, i.e. B = {vi |σi =
0, i = 1, . . . ,Nu}, where Nu is the number of parameters
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that represent the DOF in the input. Note that due to the

symmetric structure of H also an eigenvalue decomposition

can be used to determine B.

Not all orthogonal directions spanned by the columns of B

will be redundant DOF. These directions are redundant DOF,

if they are linear and all higher order derivatives are zero as

well, which at this point in time is impossible to proof for

reservoir models. B is however a basis for redundant DOF

for a quadratic approximation Ĵ of objective function J. As

Ĵ can be considered to be an acceptable approximation for

small deviations from u∗, B can be regarded as an acceptable

basis for the redundant DOF for small deviations from u∗.

Unfortunately, no reservoir simulation package is currently

capable of calculating second-order derivatives. However,

using the gradient information second-order derivatives can

be approximated. Within this work a forward-difference

scheme is adopted:

∂ 2J

∂ui∂u j
≈

∇Ji(u+h je j)−∇Ji(u)

2h j
+

∇J j(u+hiei)−∇J j(u)

2hi
(18)

Where ei is a canonical unit vector and hi is the pertur-

bation step size that relates to parameter ui of u. In total

Nu + 1 simulations (function evaluations) are required to

obtain the approximate Hessian matrix Ĥ at a particular

optimal solution u∗.

B. Lexicographic optimization method

Adopting the approximation of H as described in Sub-

section IV-A, the following iterative procedure is proposed

to attack the lexicographic optimization problem (13) - (16)

with ε = 0:

1) Find a (single) optimal strategy u∗ to primary objective

function J1 and use u = u∗ as starting point in the

secondary optimization problem.

2) Approximate the Hessian matrix H of J1 with respect

to the input variables at (initial input) u and determine

an orthonormal basis B for the null-space of Ĥ.

3) Find the improving gradient direction ∂J2
∂u

for the

secondary objective function J2.

4) Project ∂J2
∂u

onto the orthonormal basis B to obtain

projected direction d, such that d is an improving

direction for J2, but does not affect J1. The projection

is performed using projection matrix P:

d = P ·

(

∂J2

∂u

)T

(19)

P = B ·
(

B ·T B
)−1

·BT = B ·BT (20)

5) Update u using projected direction d in a SA method.

un+1 = un + τn ·d, (21)

where τn is an appropriately small step size such that

the quadratic approximation of J1 is justified.

producer

injector
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inj6

inj1

inj3 inj2

inj5

inj7
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prod3

inj4

prod1

prod4

prod22

Fig. 2. 3D reservoir model with 4 production and 8 injection wells. The
geological structure involves a network of meandering channels in which
the fluids flows experience less resistance, due to higher permeability.

6) Perform steps 2 through 6 until convergence of J2.

In the next section a numerical example is presented where

the iterative lexicographic optimization structure is tested on

a 3D heterogeneous reservoir model.

V. NUMERICAL EXAMPLE

The lexicographic optimization procedure is applied to a

3-dimensional oil reservoir model, introduced in [12]. The

life-cycle of the reservoir covers a period of 3,600 days

and is chosen such that all oil can be produced within that

time frame. The length of the life-cycle is in this example

not incorporated as additional optimization parameter. The

reservoir model consists of 18,553 grid blocks, as depicted

in Figure 2, and has dimensions of 480× 480× 28 meter.

Its geological structure involves a network of fossilized

meandering channels in which the flowing fluids experience

less resistance, due to higher permeability. The average

reservoir pressure is 400 [bar].

The reservoir model contains 8 injection wells and 4

production wells. The production wells are modeled using

a well model (8) and are constrained to operate at a constant

bottom hole pressure pbh of 395 [bar]. The flow rates of the

injection wells can be manipulated directly, i.e. the control

input u involves injection flow rate trajectories for each of

the 8 injection wells. The minimum rate for each injection

well is 0.0 [ m3

day ], the maximum rate is set at a rate of 79.5

[ m3

day ].
The control input u is re-parameterized in time using a

zero-order-hold scheme with input parameter vector θ . For

each of the 8 injection wells, the control input u is re-

parameterized into 4 time periods tθi
of 900 days over which

the injection rate is held constant at value θi. Thus, the input

parameter vector θ consists of 8×4 = 32 elements.

A. Life-cycle optimization

The objective function for the life-cycle optimization is

defined in terms of NPV, as defined in Equation (12), with

ro = 126 [ $
m3 ], rw = 19 [ $

m3 ] and ri = 6 [ $
m3 ]. The discount
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rate b is set to 0. Thus, the life-cycle objective relates to

undiscounted cash flow.

The optimal input - denoted by uθ
∗ - obtained after

approximately 50 iterations, is shown in Figure 3. None of

the input constraints (11) are active for uθ
∗. The value of the

objective function corresponding to input uθ
∗ is 47.6×106 $.

B. Lexicographic optimization

A secondary objective function J2 was defined to empha-

size the importance of short-term production. To that end, J2

is chosen identical to the primary objective function but with

the addition of a very high annual discount rate b of 0.25.

As a result, short-term production is weighed more heavily

than future production. Note that due to the extremely high

discount rate, the actual value of J2 no longer has a realistic

meaning in an economic sense.

The lexicographic approach as presented in Subsection

IV-B is applied, starting from u∗ such that ε = 0. The

total number of simulation runs needed to approximate the

Hessian (Ĥ) is 33. However, the required simulation time

was vastly reduced by parallel processing the simulations.

Due to the fact that this example involves a numerical

model and an approximation of the second-order derivatives,

the selection criterion for B is relaxed. Those columns vi of

V were selected that correspond to singular values for which
σi
σ1

< 0.02 instead of σi = 0. The projected gradients d were

again used in a steepest-ascent scheme. For the quadratic

approximation of J1 is be justified, uθ ,new must remain close

to uθ ,old . To achieve that, d was normalized and a constant

step size τ of 1 was used. Due to time restrictions, the

lexicographic optimization of J2 was terminated after 210

iterations with final control input ũ∗
θ . To evaluate the results

of the lexicographic optimization, a second optimization case

was carried out, where optimization of J2 was performed

without projection on B. As a result, the obtained control

input - denoted by ũθ - does not ensure optimality of J1.

0 900 1800 2700 3600
0

20

40

60

80

time [days]

fl
o

w
 r

a
te

 [
m

3
/d

a
y]

injection well 1

0 900 1800 2700 3600
0

20

40

60

80

time [days]

fl
o

w
 r

a
te

 [
m

3
/d

a
y]

injection well 2

0 900 1800 2700 3600
0

20

40

60

80

time [days]

fl
o

w
 r

a
te

 [
m

3
/d

a
y]

injection well 3

0 900 1800 2700 3600
0

20

40

60

80

time [days]

fl
o

w
 r

a
te

 [
m

3
/d

a
y]

injection well 4

0 900 1800 2700 3600
0

20

40

60

80

time [days]

fl
o

w
 r

a
te

 [
m

3
/d

a
y]

injection well 5

0 900 1800 2700 3600
0

20

40

60

80

time [days]

fl
o

w
 r

a
te

 [
m

3
/d

a
y]

injection well 6

0 900 1800 2700 3600
0

20

40

60

80

time [days]

fl
o

w
 r

a
te

 [
m

3
/d

a
y]

injection well 7

0 900 1800 2700 3600
0

20

40

60

80

time [days]

fl
o

w
 r

a
te

 [
m

3
/d

a
y]

injection well 8

~

u
θ
*

u
θ
*

Fig. 3. Input trajectories for each of the 8 injection wells for the initial
optimal solution uθ

∗ to J1 (dashed line) and the optimal solution ũ∗
θ after

the constrained optimization of J2 (solid line)
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Fig. 4. Values of the secondary J2 and primary J1 objective function plotted
against the iteration number for the secondary optimization problem con-
strained by the orthonormal basis B (a. and b.), and no longer constrained
by the orthonormal basis B (c. and d.).

Figures 4.a and 4.b display the values of J1 and J2

plotted against the iteration number for the lexicographic

optimization problem. They show a considerable increase of

J2 of 28.2% and a slight drop of J1 of -0.3%. This slight drop

may be the result of the accuracy of the approximation of the

Hessian matrix, but it has not been investigated any further.

In Figure 3 the input strategy after the final iteration step is

presented. It can be observed that the injection strategy shows

a substantial increase in injection rates at the beginning of

the production life and a decrease at the end. The values

of J1 and J2 plotted against the iteration number for the

unconstrained optimization of J2 are shown in Figures 4.c

and 4.d. Again an increase of J2 of 28.2% is realized, but now

at a cost of a decrease of J1 of -4.2%. Finally, Figure 5 shows

the value of the primary objective function J1 over time until

the end of the producing reservoir life for uθ
∗, ũ∗

θ and ũθ .

Input ũ∗
θ shows a steeper ascent of J1 than uθ

∗, while their

final values are nearly equal. Input ũθ shows initially the

same steep ascent as ũ∗
θ , but J1 drops at the end of the life of

the reservoir. It should be noted however that the differences

between uθ
∗, ũ∗

θ and ũθ , and their corresponding NPV’s

would be less distinct if the primary objective function was

given a non-zero discount factor as well.

VI. CONCLUSION

Model-based optimization is a relatively new approach

to oil recovery from petroleum reservoirs. Optimization

studies have shown a considerable potential increase in life-

cycle performance. However, increased understanding of the

optimal control problem and characteristics of the optimal

solutions is necessary to take the next step towards a real-

life application.

Within this work the issue of multiple objectives in oil

production is addressed. A lexicographic approach is investi-

gated by means of a simulation experiment. For the presented

experiment, we conclude that:

• There exist redundant DOF in the input strategy u with

respect to the optimality of the life-cycle objective.

1227



0 900 1800 2700 3600
0

5

10

15

20

25

30

35

40

45

50

time [days]

N
P

V
 o

ve
r 

T
im

e 
−

 U
n

d
is

co
u

n
te

d
 [

1
0 6

 $
]

~

~

value of objective function J
1
 resulting from u

θ

*

value of objective function J
1
 resulting from u

θ

*

value of objective function J
1
 resulting from u

θ

Fig. 5. Value of the primary objective function J1 over time for initial
optimal input uθ

∗ to J1 (dashed line), the optimal input ũ∗
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This implies the existence of an optimal subset S of

connected optimal solutions within the control variable

space U .

• The redundant DOF create enough freedom to sig-

nificantly improve the secondary objective function.

Moreover, the difference between the initial and final

input strategy to the secondary optimization problem is

substantial. This suggest that S occupies a considerable

space within decision variable space U .

• The presented lexicographic optimization procedure

provides a method to incorporate short-term perfor-

mance objectives into problem setting of maximiz-

ing life-cycle performance of oil recovery. Using the

lexicographic structure, optimization of the secondary

objective may be executed without significantly com-

promising the primary objective.

Under which conditions these conclusions also apply to

different life-cycle waterflooding problems and/or different

reservoir models will be subject for further investigation.

A. Discussion

The presented lexicographic optimization approach is

computationally very demanding and becomes infeasible for

more realistic reservoir models with an increased number

of input parameters. A different method to approximate the

Hessian requiring less simulation runs may be considered

to resolve this, e.g. the secant method. Alternative, reduced

Hessian methods can be used that approximate only that

portion of the Hessian relevant for the subspace in which the

Hessian is positive (or negative) definite [13]. If the Hessian

is positive (or negative) semidefinite, the tangent space to

this subspace is equal to the null-space. This may lead to

a significant reduction in computational burden when the

dimensions of the null-space are large. However, calculating

second-order derivatives may be avoided altogether when the

hierarchical optimization problem is imbedded in the adjoint

formulation, as mentioned in Section IV. This approach will

be the focus of future research.

NOMENCLATURE

p pressure [Pa]
S saturation [-]
φ porosity [-]

k permeability [m2]
kr relative permeability [-]

λ̃ mobility [m2/Pa s]
µ viscosity [Pa s]

ρ density [kg/m3]

q flow rate [m3/day]
w well constant [m/Pa s]
pbh bottom hole pressure [Pa]
∇ spatial derivative operator [1/m]
J1 primary objective function [$]
J2 secondary objective function [$]

r revenues/costs [$/m3]
b discount rate [-]
fw fraction of phase i [-]

U control variable space
S optimal subset of U

x state vector
x0 initial conditions
H Hessian matrix

Ĥ approximate Hessian matrix
B basis for redundant DOF
d projected search direction on B
P projection matrix
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