
 

The page matrix : an excellent tool for noise filtering of Markov
parameters, order testing and realization
Citation for published version (APA):
Damen, A. A. H., Hof, van den, P. M. J., & Hajdasinski, A. K. (1982). The page matrix : an excellent tool for
noise filtering of Markov parameters, order testing and realization. (EUT report. E, Fac. of Electrical Engineering;
Vol. 82-E-127). Technische Hogeschool Eindhoven.

Document status and date:
Published: 01/01/1982

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 25. Sep. 2021

https://research.tue.nl/en/publications/d2a73baf-5a84-41d7-b854-b0770311b589


Department of 
Electrical Engineering 

The Page Matrix: An excellent Tool for Noise 
Filtering of Markov Parameters, Order Testing 
and Realization. 

By 
A.A.H. Damen, P.M.J. Van den Hof and 
A.K. Hajdasi,;ski 

EUT Report 82-E-127 
ISBN 90-6144-127-7 
ISSN 0167-9708 

August 1982 



Eindhoven University of Technology R_rch Report. 

EINDHOVEN UNIVERSITY OF TECHNOLOGY 

Department of Electrical Engineering 

Eindhoven The Netherlands 

THE PAGE MATRIX: An excellent tool for 

noise filtering of Markov parameters, order 

testing and realization. 

By 

A.A.H. Damen 

P.M.J. Van den Hof 

A.K. Hajdasifiski 

EUT Report 82-E-127 

ISBN 90-6144-127-7 

ISSN 0167-9708 

Eindhoven 

August 1982 



CIP-gegevens 

Darnen, A.A.H. 

The Page matrix: an excellent tool for noise filtering 
of Markov parameters, order testing and realization / 
A.A.H. Darnen, P.M.J. Van den Hof, A.K. Hajdasifiski. -
Eindhoven: University of technology. -
(Eindhoven university of technology research reports; 
82-E-127) 
Met lit. opg., reg. 
ISBN 90-6144-127-7 
ISSN 0167-9708 
SISO 656.2 UDC 519.71 
Trefw.: meettechniek I regeltechniek. 



CONTENTS 

A note on this report 

Abstract 1 

Chapter 1. Outline of the problems and introduction of the Page 2 

matrix 

1.0 Introduction 

1.1 The Ho-Kalman algorithm for deterministic data 

1.2 Application of the Ho-Kalman algorithm for 

stochastic data 

2 

2 

5 

1.3 Introduction of the Page matrix 7 

1.4 A comparison of the Hankel and the Page matrix 9 

Chapter 2. Validity of the realization procedure using the Page 11 

matrix 

2.1 Problem reduction to the observability of the 11 

system (A~.B.C) 

2.2 Observability of (A,B,C) 14 

I.Introduction 14 

2.Jordan canonical form 15 

3.A criterion for observability of (A,B,C) 17 

4.Proof of the theorem of Chen and Desoer 21 

5.Remarks 24 
~ 2.3 Observability of (A ,B,C) 25 

I.Jordan structure of A~ 25 

2.Situations of nonobservability 28 

3.Replacement of poles in the z-domain 30 

2.4 Remarks. 31 

Chapter 3. Conclusions 33 

Appendix 35 

Literature 37 



A note on this report 

Chapter one of this report presents the most relevant information, 

but mainly as a result of one crucial theorem. The proof of this 

theorem is quite extensive and given in chapter two as a separate 

part. 



-1-

ABSTRACT 

When the Ho-Kalman algorithm is applied to a truncated series of 

noisy Markov parameters, the Hankel matrix used has either the 

improper rank or it lacks the Hankel structure. Furthermore the 

Markov parameters are not processed with a constant weighting 

factor, which implies that the noise filtering is inadequate. 

In this paper we propose to use an alternative matrix: the Page 

matrix. It is shown that this method is much better suited for 

handling the noisy Markov parameters This holds with respect to 

three aspects: order testing, noise filtering and realization. 

Even in the deterministic case, the Page matrix offers the 

advantage of a considerable reduction in computation. 
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identification, parameter estimation, system order 

reduction, noise filtering, realization, Hankel matrix. 
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Chapter 1. OUTLINE OF THE PROBLEMS AND INTRODUCTION OF THE PAGE 

MATRIX 

1.0 INTRODUCTION 

The minimum realization for a sufficiently long truncated series 

of deterministic Markov parameters offers no problems. This has 

been shown by Ho and Kalman [1]. In section 1.1 we will summarize 

this algorithm. However, a fully satisfactory solution for the 

noisy case has not yet been proposed. Of course, the Ho-Kalman 

algorithm is being applied in a modified way for the noisy case, 

but the results are rather questionable. This is quite 

understandable because, theoretically, the processing of the noise 

is fundamentally wrong. This inadequacy will be elucidated in 

section 1.2. 

In our opinion, the use of the Page matrix, which will be 

introduced in section 1.3, may overcome the majority of the 

problems caused by the use of the Hankel matrix. This will be 

emphasized in section 1.4, where we will cqmpare the Hankel matrix 

algorithm with the one based on the Page matrix. 

1.1. THE HO-KALMAN ALGORITHM FOR DETERMINISTIC DATA 

As a short recapitulation and in order to define a notation, we 

will briefly sketch the Ho-Kalman algorithm. This algorithm was 

introduced in 1966 [1]. It constructs a minimum realization 

(A,B,C) of a linear, time-invariant, state space model, given a 

noise-free Hankel matrix with the correct size for the system. 

Let a truncated series of Markov parameters be denoted by: 

M M M M where M • CAi - l B. I' 2' 3' ••• , L i (1.1) 

Then a Hankel matrix and its decomposition can be written as: 
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Ml MZ M3 '\/2 

H = MZ M3 M4 '\/2+1 = 

ML/ Z '\-1 

C [ B AB A2B A 3B • • AL/Z-1B] 

::I r • .6. = CA 

~AL/2-l 
(1.2) 

If the number of Markov parameters L exceeds twice the dimension 

n of the minimum realization of the system, and if we are dealing 

with a completely observable and completely controllable system we 

are sure that the rank of H equals n. Apart from this, under these 

conditions, any such decomposition into rand 6 of minimal 

dimension n and full rank will lead to a minimum realization 

(A,B,C). The complete set of all possible (r,6) together then 

produces the complete equivalence class of the system under study. 

It is well known that the elements of both the set (r,6) and the 

set (A,B,C) can be transformed into each other by means of a noo

singular square matrix T of dimension n. 

The triplet (A,B,C) can be obtained from (r,6) as follows: the 

matrices Band C can be recognized as the first blocks in 6 and r 

respectively. In order to obtain matrix A, we need a shifted 

matrix, which we indicate by an arrow. A vertically pOinting arrow 

indicates a shift of one block row, whereas a horizontally pointing 

arrow denotes a shift of one block column. From this it is clear 

that 

Ht = Ii = fA6 (1.3) 

and as rand 6 have a maximum rank 0, we may write: 

A = r+ Ht 6+ ( 1.4) 

where + stands for pseudo inverse. 

Note that we needed the extra Markov parameter HL to construct 

the shifted Hankel matrix. 
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An alternative procedure is provided by either the 'extended 

observability' matrix r or the 'extended controllability' matrix ~, 

because: 

rt = fA or AlJ. = ! (1. 5) 

Consequently this yields: 

or (1.6) 

As we do not have any information on what to insert in the latter 

blocks of r or ~ during the shift operation, we have to apply a 

reduced version of f and ~. 

Finally, a numerically stable decomposition of R is offered by the 

singular value decomposition, given by 

dim(R) - g • 1 

. . . .. ;;. 

5 = 0 = 
n+l n+2 

• • •• .. IS 

s = min (g,l) 

and 

s 

6 > 0 
n 

- 0 

Because rankeR) - n we may rewrite this as: 

R = R = U D VT 
n n n n 

(1.7) 

(l.8) 

where for Rn only the first n non-zero singular values are used 

in Dn, and the corresponding singular vectors (i.e. columns) in 

Un and Vn• 
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If we distribute the singular values in a balanced way among rand 

fl we get: 

r = U 0 1/2 
n n 

and fl_D l/2 v 
n n 

(1.9) 

1.2. APPLICATION OF THE HO-KALMAN ALGORITHM FOR STOCHASTIC DATA 

In 1974 Zeiger and McEwen [2] suggested using the Ho-Kalman 

algorithm with the singular value decomposition with noisy data. 

In that case, all singular values up to and including 6s will 

be non-zero. (The distinction with the deterministic case is 

denoted by the circumflex ~). 

It is easy to verify that, in cases where the Markov parameters are 

contaminated with SWAYING noise, we may write (see appendix): 

where E stands for expectation. 

SWAYING noise is defined as follows: 

( 1.10) 

(1.11) 

where Mi(a,b) is element a,b in matrix Hi and ~iab is the 

corresponding additive noise. This noise is assumed to be 

stationary (S), white (W) (zero mean), additive (A), signal

independent (Y), inter-independent (among channels) (I), with non

changing global variance 02 (NG): 

i,a,bE IN (1.12) 

E{Mi(a,b) ~jcd } = 0 
i,a,b,j,c,dE IN (1.13) 

0 i,a,b P j,c,d 

E{~iab~jCd} -
,,2 

(1.14 ) 
i,a,b - j,c,a 

This increase in singular values is reflected in Fig. 1. 
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o 
_______ 9 _ -<l... -t)- __ - -

o 0 

23456789 

n = 3 

min(g,1) = 8 

x noise-free s.v. 6 

o noisy s. v. 6i 

Singular values of the Hankel matrix 

i 

Based upon knowledge of the noise level in the singular value, one 

may decide upon the dimension n of the system and approximate the 

Hankel matrix in a least squares sense by 

H = U D V
T 

n n n n 

(see e.g. [3]). 

(1.15) 

In this way we perform a noise filtering on the Hankel matrix and 

implicitly use the singular values for the order testing, before we 

apply the Ho-Kalman algorithm. 

Then,there exist several possibilities for applying the formulae of 

the previous section 1.1 in order to find a realization. These 

possibilities are compared in [4]. 

For the shifted Hankel matrix we may either use the original H [5], 

or the approximating Hn[6]. Alternatively, the rand 8 matrices 

may be used [7] to evaluate A. 

However, all methods using the Ho-Kalman algorithm for noisy Markov 

parameters show severe drawbacks, which are mainly due to the least 

squares approximation of the Hankel matrix. Although the 

approximating Hankel matrix Hn may have the proper rank, it lacks 

the necessary Hankel structure. Therefore it does not provide 
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directly unique Markov parameters. From another point of view, the 

Markov parameters, that constitute the Hankel matrix, are weighted 

by an isosceles triangular function with the top on L/2 for 

~/2. This is due to the fact that, depending on their 

index, the Markov parameters appear more frequently in the Hankel 

matrix. 

Statistical considerations are also difficult to make, as the noise 

on the entries in the Hankel matrix is not independent, but exactly 

the same noise data appear frequently in several entries. 

Because of all these drawbacks when using the Hankel matrix, we 

will now introduce an alternative matrix. 

1.3. INTRODUCTION OF THE PAGE MATRIX 

In order to overcome the problems caused by the special block 

structure of the Hankel matrix, a trivial matrix is introduced 

here, which is constructed from the Markov parameters in the most 

natural way. 

Similarly to filling a page with characters, it follows that this 

matrix should be called the Page matrix. It is defined as: 

Mi M2 M3 M 
~ 

P = MlI+l M2~ dim(P) - h x m (1.16) 
. 
M M 

(TJ-l) 11+1 n~ 

As ever, some nations show a different behaviour in this respect, 

and consequently we may also define a Chinese Page matrix Cp , 

where the Markov parameters are ordered column-wlse. 

We will not analyse this Chinese Page matrix meticulously here, as 

this analysis is completely dual to the normal Page matrix. 

In the purely deterministic case, the Page matrix can be decomposed 

in a manner similar to the Hankel matrix: 



P = 

C 

CA~ 

p.... r • 11 
~ 

[B 
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AB (l.17) 

Whereas the Hankel matrix is the product of the extended 

observability matrix r and the extended controllability matrix ~ of 

the system (A,B,C), the Page matrix is the product of the extended 

observability matrix of the system (A~,B,C) and the extended 

controllability matrix of the system (A,B,C). 

Next we will state the crucial theorem in this context: 

Theorem: 

If the dimensions of the Page matrix are chosen large enough 

p,n ~n(= the dimension of the system), and if (C,AP) is a 

completely observable couple, it holds that 

rank P = n (1.18) 

and any decomposition in rp and ~ of minimum dimension n will 

lead to a minimum realization. 

The formal proof of this theorem is straightforward and given in 

chapter 2. Furthermore in chapter 2 all conditions for the 

observability of the couple (C,AP) are stated. 

As a short outline we give the following summary. 

Because exclusively completely observable and controllable systems 

(A,B,C) are considered here, non-observability of the system 

(A~,B,C) is a situation that 1s quite exceptional. It can only 

happen if distinct poles in A happen to be non-distinct ones in 

AU. 

Let the position of a pole of system matrix A in the complex z

plane be characterized by the radius r and the argument ~. 

Then the corresponding pole for system matrix AU is characterized 
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by r~ and ~~. Consequently, original poles of equal radius may 

coincide in system matrix A~ in the case of ~~i - ~~j + 2k~, 

kE~. Then the non-observability might occur if the corresponding 

columns of CJ are dependent, where (CJ , A~) is the Jordan 

canonical form of (C,A~). 

It is obvious that this can be avoided by requiring that for all 

poles ~ I ~ I < ~ holds ,which, for example, implies a sufficiently 

high sampling rate. 

Finally,as a result of non-observability in (C,A~), the possible 

multiple poles in the origin of the z-plane remain. These poles 

occur in the case of delays and impulse responses of finite 

length. This is discussed and elaborated upon in chapter 2. 

From here on we will assume (C,A~) to be completely observable. 

In the dual case of the Chinese Page matrix (which could be used 

in cases of a suspected failure of the Page matrix), the assumption 

of complete controllability of (A~.B) is made. 

Under these conditions the rank of the Page matrix simply defines 

the order, and the realization (A,B,C) can be obtained similarly as 

for the Hankel matrix, apart from the fact that the proper shifted 

matrices have to be used. The Page matrix has to be shifted one 

block to the left, and the Chinese Page matrix one block upwards. 

For the use of formula (1.5) the Page matrix provides the proper a 

and the Chinese Page matrix the proper r. 

1.4. A COMPARISON OF THE HANKEL AND PAGE MATRIX 

In the deterministic case, both the Hankel and the Page matrices 

can be used to obtain a minimum realization. 

As indicated, the Page matrix may fail in some exceptional cases, 

but the size of the Page matrix is much smaller (h.m = L-l) than 

the size of the Hankel matrix (l.g - L2/4). Consequently, the 

reduction in the computational effort is considerable. 
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Nevertheless, the superiority of the Page matrix is much more 

significant for the noisy case. In the Page matrix all Markov 

parameters appear only once, which means that, when reducing the 

rank with the aid of singular value decomposition, there is an 

equally balanced filtering over the parameters. Moreover, a Page 

matrix of reduced rank provides a unique sequence of Markov 

parameters. 

So the noise filtering by means of the singular value decomposition 

of the Page matrix is simply a least squares approximation of the 

Markov parameters with a fixed (or estimated) dimension of the 

system. 

This noise filtering operation provides us with a criterion for the 

optimum size of the Page· matrix. 

For a given number L of available Markov parameters, the block 

dimensions of the Page matrix can be chosen in different 

combinations as long as n~ = L-1. 

If we assume that the Markov parameters in the Page matrix are 

disturbed with SWAYING noise, the total expected noise energy in P 

(in expectation) can be written as: 

h • m • 02 (1.19) 

Because of the character of the nOise, the expected noise energy 

will, if applying the singular value decomposition to P, be equally 

distributed over all squared singular values (see Appendix). When 

the rank of the Page matrix is reduced to n, by setting min(h,m)-n 

singular values equal to zero, the expected noise reduction equals: 

n.max(h,m).o2 

h.m.02 
n 

min(h,m) 
(1.20) 

For optimizing this noise reduction, min(h,m) has to be maximized. 

This implies that we have to choose P as close to square as 

possible. 
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Chapter 2. VALIDITY OF THE REALIZATION PROCEDURE USING THE PAGE 

MATRIX 

2.1 PROBLEM REDUCTION TO THE OBSERVABILITY OF SYSTEM (A~,B,C) 

This chapter is devoted to the central theorem used in chapter 1, 

where the idea of a Page matrix was introduced. 

Assuming a sequence of deterministic Markov parameters 

{Mk)k=l •• ,L with a finite dimensional realization 

(A,B,C), the Hankel matrix can be written as: 

where 

C 

CA 

r = CA
2 

• 

CA 
y-1 

where Y=L/2. 

II = [ B AB A2B 

dim(H)-gxl 

dime f)-gxn 

dime lI)mn xl 

(2.1) 

(2.2) 

If Y is large enough, the extended observability matrix r and the 

extended controllability matrix II have full rank n. The limit which 

we will use is y)n though theoretically the condition y>r is 

sufficient where r is the realizability index. 

The Hankel matrix H transforms the space R1 into Rg via Rn 

and this is made explicit by mesns of II (Rl "'Rn) and r 

(Rn+Rg). A lot of freedom, however, is left by not defining the 

base in Rn. All possibilities together define the equivalence 

class which is invariant under the following equivalence 

transformation: 

If the following two sets correspond to the same Hankel matrix: 
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(r,t.,A,B,C) 
equivalent in H +----------------+ 

then the equivalence transformation 

* -1 * r = r T t. ~ T t. 

* -1 * C = C T B = T B 

* 

* * * * * (r ,t. ,A ,B ,C 

is given by: 

) 

A = T A T -1 where T nonsingular,dim(T)anxn 

A numerically stable solution for rand t. can be found from a 

singular value decomposition of H 

and consequently: 

H = (UO~)(O~T) - r t. 

so that we may choose: r = U 0; 

t. a 0\ VT 

(Because of the orthonormality of U and V, both matrices (UO\) 

and (O~VT) will have rank n.) 

(2.3) 

(2.4) 

(2.5) 

Based on this decomposition of H into two matrices of rank n, a 

minimum 

where 

and the 

realization (A,B,C) 

c = E yq U 01,; 
q 

B = O~ VT 

E yq = I ~q q q 

EP = [ I ~P yp P 

can be found (see [2] and [4]) 

V 

~q 

~P 

-~ o 

/) q ] 

~ ]T 
P 

shifted Hankel matrix: 

by: 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 
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• 

(2.11 ) 

• 

Whether this same algorithm for finding a minimum realization may 

be applied to the Page matrix Is dependent on the fact whether the 

rank of P equals the minimum dimension of the system n. 

The Page matrix may be decomposed as: 

where 

• 

dim(P)-h "lIl 

[ B AB 

dime r~) = hxn 

dime iI) = n><m 

~-l 
A B 

(2.12) 

(2.13) 

It is obvious, that ~ n ~ n and ~ ~ n and ~ the system (A,B,C) 

is completely observable and controllable and the system ~~ 

is completely observable,the ~ equivalence class can be defined 

for P as for H, with exactly the ~ equivalence transformation. 

The crucial condition is that the system (A~,B,C) is completely 

observable,because then the extended observability matrix r~ has 

full rank n. 

(In the dual case of the Chinese Page matrix, the controllability 

of (An,B,C) is required to assure the full rank of iI ). 

It can be proved that the rank r~.n (which will be the hsrdest 

job),then the following can be stated about the rank of P; A 

general rule for the rank of a product of matrices XY is: 

rank XY , min(rank X,rank Y).The Sylvester's inequality (see [a] 
p.66) is an extension of this relation: it states that for the rank 



-14-

of the product of rectangular matrices X and Y of dimensions resp. 

mxn and nxq, it holds that: 

rank X + rank Y - n ( rank(XY) (min(rank X,rank Y) 

Applying this inequality to the Page matrix (eq.(2.12»,this leads 

to 

n ( rank P ( n 

And as the result : 

rank P = n 

(2.14) 

(2.15) 

If rank r~=n and consequently rank P=n, a singular value 

decomposition of P leads to a decomposition of P into two matrices 

each with rank n. From this decomposition a minimum realization can 

be found in the same way as for the Hankel matrix, i.e. using the 

Ho-Kalman algorithm. As for the Hankel matrix all the subsequent 

steps are invariant under the equivalence transformation (with 

nonsingular matrix T). 

In the remaining part of this chapter the condition rank P=n will 

be a subject of study. As a summary it can be stated that if we can 

prove that rank r~=n, this immediately leads to the required rank 

condition for P. This feature will be discussed in the next 

section, where we will just indicate all exceptions for which 

rank r~ II n. 

2.2 OBSERVABILITY OF (A,B,C) 

2.2.1. INTRODUCTION 

Our task is to prove that 

rank n (2.16) 

CA(n-l)~ 

given a minimum realization (A,B,C). If (A,B,C) is a minimum 

realization, it is proved [1] that 



rank 

C 

CA 

CA n-l 
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n (2.17) 

in other words : (A,B,C) is a completely observable realization. 

Rank r~=n can only be assured if n>n. This is a similar condition 

as the condition ~)n for the extended controllability matrix 6n• 

The condition rank r~n corresponds to the statement that 

(A~,B,C) is a completely observable system. The final formulation 

of the problem now becomes: 

Given a completely observable system (A,B,C); under which 

conditions is the system (A~,B,C) also completely observsble for 

any ~ > 1. 

To deal with the problem of complete observability of systems a 

congruent definition of this feature will be introduced, taking 

into account the structure of the matrix A, and more specifically 

its eigenvalues. 

Such a definition is given by Chen and Desoer [9] in the first 

instance for complete controllability. Their theorem will be stated 

here and the proof of the theorem will be given along the same 

lines as they did. This will be necessary for applying the theorem 

to the situation of the system (A~,B,C). For this purpose the 

Jordan canonical form is necessary, which will be defined next. 

2.2.2. JORDAN CANONICAL FORM 

Consider a system with v different eigenvalues. The system can 

always be represented in its Jordan canonical form, in which there 

are no two Jordan blocks associated with the same eigenvalue. This 

Jordan form can be written as follows: 
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Al 0 0 

0 • 0 A2 
AJ CJ - ( C

1 
C

2 
• C 1 (2.18) v 

• (qxn) 

0 A v 

(nxn) 

where Ai and Ci will denote all Jordan blocks associated with 

eigenvalue Ai. 

Every Jordan block can be represented by a numer of Jordan cages, 

again ordered in a block diagonal way: 

Ail 

cir(i) 1 

(2.19) 

(npni) 

With every eigenvalue Ai there are associated r(i) Jordan cages. 

This Jordan cages have the following form: 

Ai 1 0 0 

0 \ 1 0 • 0 

Aij C
ij 

D ( ~lij ~2ij' • ~ij 1 
0 1 (qxnij ) 

0 • • • \ 
(2.20) 

(nijx nij ) 

where .£lij and ~ij are the first and the last column 

of Cij, respectively. 

The matrix A in the Jordan canonical form is completely defined by 

all numbers AiE. ~ ,and nij,ja1 •• r(i), i-1 ••• v. 

Al, i=l •• v define the values of the diagonal elements, 

nij,i-l ••• v,j-1 ••• r(i) define the structure of matrix A 
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r(i) 
l. n = the multiplicity of "pole" Ai 

j=l ij 
For the remainder of this chapter we assume. that ( A.B.C ) has been 

brought into a Jordan canonical form ( AJ.BJ,CJ ). so that 

the index J will be dropped. 

2.2.3. A CRITERION FOR OBSERVABILITY OF ( A.B.C ) 

The theorem of Chen and Desoer (9] now states the following: 

The system (A.B.C) is completely observable if and only if 

the condition E holds. where 

E: for each i=1.2 •••• v. the set of r(i) q-dimensional column 

vectors .s1l'~112' ••• .sir(i) is a 

linearly independent set. 

Note that these are the columns of C corresponding to !!!!!!. (first) 

state in each cage. which is independent on all other states in 

that cage. 

In the dual case of controllability .those rows of B have to form 

an independent set which correspond to !!!!!!. (last) state in each 

cage. which is independent on (but influencing) all other states in 

that cage. (see [9]) 
For poles with multiplicity one (single poles) the set consists of 

just one element (row or column) and independence then means, that 

this isn't a zero vector. At least one input should influence the 

corresponding state or in the dual case at lesst from one output 

one should be able to observe the corresponding state. 

To prove this theorem there has to be demonstrated that this 

property of A and C fits with the definition of Kalman: 

rank f = n 

For the clearness of this text there will be defined: 

f(A.C.n) = 

n-l 
CA 

(2.21) 

(2.22) 
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To prove the equivalence relation 

condition E ++ rank r(A,C,n) m n (2.23) 

we will need three assertions that will be stated first: 

Assertion 1: For any integer n, any complex A, and any matrices A 

and C having proper dimensions 

rank r(A,C,n) • rank r(A-AI,C,n) (2.24) 

Proof: C(A-AI)i can always be written as a linear combination 

of CAi, CAi-l • • ., C, and therefore it holds that 

r(A-AI,C,n) is obtainable from r(A,C,n) by applying to it a 

sequence of elementary row operations. More specifically there 

exists a nonsingular matrix Q(hxh) in such a way that 

r(A-AI,C,n) = Qr(A,C,n) (2.25) 

According to the Sylvester inequality ([S] p.1S) it can be written: 

rankr(A,C,n)+h-h 'rankr(A- AI ,C, n) 'rankr(A,C, n) (2.26) 

Therefore it follows that eq. (2.24) holds. 

In words : the rank of the observability matrix will not change 

when all diagonal elements of A are increased or decreased with the 

same constant AE. ~ ( which simply means a change of the origin in 

the complex z-plane). 

Assertion 2: rank r(A
i

,C
i

,8) • rank r(Ai,Ci,n
i

) for all 

s ) n
i

, where ni - max! nij' j-l,2, ••• r(i)}. 

Proof: Because of the specjal Jordan structure of Ai it follows 

that 
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and therefore for all s>Oi 

Because of assertion 1: 

rank r(Ai,ci,s) - rank r(Ai - "II,Ci,s) 

With the result above this leads to 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

In words: a Jordan canonical form of a system with one distinct 

eigenvslue, forms an observability matrix for which holds that the 

number of matrix products that has to be taken into account to come 

to the maximal rank of r, is determined by the dimension of the 

largest Jordan cage. 

Assertion 3: If there exist a nonzero n-dimensional column vector 

~ such that r(A,C,n)~ - Q, then for any complex A, 

r(A-U,C,n)l. - Q 

Proof: From assertion 1 it follows that 

r(A-AI,C,n) = Qr(A,C,n) 

consequently if r(A,C,n)~ = Q, then for any AE. «l 

r(A-U,C,n)~ = Q 

(2.31) 

(2.32) 

For the proof of the theorem, as stated at the beginning of this 

section, some more resources will be needed ;a schematical way of 

representing r(A,C,n) is given next. 
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Because of the block diagonal structure of A, r(A,C,n) can be 

written as: 

f(A,C,n) = [r(A1,c1,n) r(A 2,C 2,n) 

[r(All ,Cll ,n) 

• r(A ,C ,n)] = 
II II 

r(Avr(II),Cllr(II),n)] (2.33) 

When we take the Jordan block associated with eigenvalue Ak, then 

for the Jordan cage with index j these can be written. 

0 1 0 0 

0 0 • 

Akj - \1 • • (2.34) 

• • 1 

0 0 

(nkjxnkj) 

which leads to 

~lkj ~2kj c 
-nkj 

0 ~lkj • • c 
=(n-l)kj 

• • 

f(Akj-Ak1,Ckj,n) • • • (2.35) 

0 • ~lkj 
0 • 0 

• • • 
0 • • 0 

NOw, all instruments are available to prove the theorem. 
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2.2.4. PROOF OF THE THEOREM OF CHEN AND DESOER 

There is going to be proved that rank r(A.C.n) - n if and only if 

condition E. as described in section 2.2.3 •• holds. 

1. Necessary condition:(+) 

Suppose rank r(A.C.n) - nand E does not hold for some i=k. This 

means that the set 

~lkl'~lk2"""~lkr(k) is a linearly dependent set. 

Now consider the way of writing r(A.C.n) and r(Ak-AkI.Ck.n) 

as in eq.(2.33) and (2.35). If the given set of c-vectors is 

linearly dependent. then there exists a linear combination of 

columns of r(A-AkI.C.n) that is linear dependent. From this it 

follows that rank r(A-AkI.C.n) < nand • by assertion 1. that 

rank r(A.C.n) < n • This is in contradiction with the hypothesis. 

and therefore for rank r(A.C.n) a n. a necessary condition is given 

by E. 

2. Sufficient conditlon:(+) 

This proof will be done in two steps. 

First it will be demonstrated that if E holds. this leads to: 

for all i (2.36) 

Given this condition it will be proved that rank f(A.C.n) a n. 

a. If E holds then rank f(Ai.Ci.n) a ni for all i. 

Proof: From assertion 1 it follows that 
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(2.37) 

With assertion 2 there can be written : 

rank r(Ai,Ci,n) - rank f(AC AiI,Ci,n i ) (2.38) 

Now suppose that rank f(A i - AiI,Ci,n i ) < ni The considered 

matrix has dimensions niqxni (q- number of outputs); if its rank 

is smaller then ni, a linear combination of the ni column 

vectors of r can be brought to zero. 

In other words: 

There exists a nonzero column vector ~ in such a way that 

r(AC AiI'Ci,ni)~ = .Q. (2.39) 

The matrix r(Ai - AiI,Ci,n i ) can be written as (in the example 

n i = n1k) 

E."kl Slk2 • E."k2 
• • • • 

Slk2 • 
0 

o • • 0 

(2.40) 

Because Slk1'Slk2' ••••• Slkr(k)is a linearly independent set, 

it can be seen that f(Ai-AiI,Ci,ni).~ can only be.Q. if ~ - o. 
This is in contradiction with the assumption, and therefore it must 

hold that 

rank r(Ai-\I,Ci,ni ) 

Because n ) n
i

, and with 

rank r(Ai,Ci,n) = ni 

- n i 
assertions 

for all i 

(2.41) 

1. and 2. it follows that 

(2.42) 
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b. If E holds then all columns of r(Ai,Ci,n) and 

r(Aj,Cj,n),i#j, will be independent. 

Proof: Suppose 

rank [ r(A
l

,C
l

,n)lr(A
2

,C 2 ,n) 1 < n
l
+ n

2 
Then there exists a nl+n2-dimensional column vector 

[~~]" Q, and [r(Al'Cl,n)'r(A2'C2,n)1[~~1 ~ Q 

With assertion 3 it follows then: 

[ r(Al,Cl,n) I r(A2 ,C2,n) 1 [i:l= Q. 

s 
(A2-A2I) = ~ for all s > n2 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

Then it follows for the 

equation (2.45): 

(n-;-)xn left under part of the matrix 
2 1 

= 0 (2.47) 

In other words: 

(2.48) 

Since AlIIA2 ' rank (A l -A2I)n 2 = n l (2.49) 

rank r(Al -A2I,C1,n-n2) = rank r(Al ,C l ,n-n2) -

= rank r(Al,Cl,nl),because nl ' n-n2 (2.50) 

With equation (2.42) it has been proved that rank 

r(Ai,Ci,ni ) = n i , so rank r(A1,Cl,n1) - n l (2.51) 

Equations (2.49) and (2.50) together with the Sylvester inequality 

now show that equation (2.48) is a vector equation with a 

nlxnl-coefficient matrix of full rank nl' 
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As a result equation (2.48) can only be fulfilled if jl-£. 
Along the same lines with substitution of Al in equation (2.45) 

it follows that Sl=£. 
Then jl=£ and Sl=£ and this is in contradiction with the 

hypothesis. 

Therefore: 

rank[r(Ai,Ci,n)lf(Aj,Cj,n)] a ni+n j (if Ai#Aj) (2.52) 

RESULT: 

When we consider the representaion of A and Ai in equation(2.18) 
r(i) 

and (2.19), it can be seen that n - L ni • 
i-l 

Because of the fact that every value of i is associated with a 

different Ai ,it follows that 

rank f(A,C,n) = n (2.53) 

With this result the theorem as stated in section 2.2.3 has been 

proved. 

2.2.5. REMARKS 

With the given criterion for complete observability it is much more 

easy to analyse the observability of a system with a more physical 

understanding than with the definition of Kalman, at least if the 

Jordan canonical form of the system is known. 

Because of our purely theoretical interest in the definition at 

this moment, this criterion is very suitable. 

In the next section it will be demonstrated under which 

circumstances (A~,B,C) is completely observable, given (A,B,C) is 

completely observable. The special structure of the matrix A in the 

Jordan canonical form will be a great help in this task. 



-25-

2.3. OBSERVABILITY OF (A~,B,C) 

2.3.1. JORDAN STRUCTURE OF A~ 

Our goal is to find all possible situations where the system 

(A~,B,C) is nonobservable, whereas the system (A,B,C) is 

completely observable. 

In these cases, and only in these cases, the Ho-Kalman algorithm 

applied to the Page matrix will not lead to a minimum realization. 

The criterion for complete observability, as introduced by Chen and 

Desoer [9] and described in the previous section, can quite easily 

be applied to the new system (A~,B,C). 

When A is assumed to be in the Jordan canonical form, as described 

in equation (2.18) , A~ can be found by raising each Jordan cage 

to the power ~. 

It is known (see [8], p.154) that a Jordan cage associated with 

eigenvalue Ai when raising it to the power ~ can be written in 

the next form: 

(2.54a) 
A~ ~-l (~_1)A~2 ~-n +1 

~'i • (~-nij+2) \ ij i 

0 ,~ , }l-l ~-n +2 • (~-nij+3)'i ij i ~ i 

~ - 0 0 All • • • AiF i 

• • • • • 

0 • A~ 
i 

and if II < nij there appears at least one 1 or in general: 

(2.54b) 

All ,}l-l ll-2 
2\ 1 0 II i (ll-l)'i • • i 

0 All ll-l 
0 2Ai 1 0 0 i ~'i 

All = • • • • 
ij 

• 

0 • • All 
i 
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In order to find out under which condition the system (A~,B,C) is 

completely observable it has to be investigated which properties of 

the matrix A are used in the criterion,of observability in section 

2.2.3. 

If the criterion is also applicable to A-matrices with a structure 

as in equation (2.54) then no situations of nonobservability of 

(A~,B,C) will occur. 

For assertions 1. and 3. (section 2.2.3.) no restrictions on the 

matrix A are made. They hold for any matrix A, and therefore they 

are also applicable to matrix A~. 

Assertion 2. (section 2.2.3.) assumes that for all i 

(2.55) 

with 

This assertion not only holds for a Jordan cage ,but for any right 

upper matrix with equal diagonal elements Ai and dimension less 

t~ni· 

Because 

remain 

~ 
Aij 

valid. 

fulfills this condition , assertion 2. will also 

In the proof of the theorem itself (section 2.2.4.) ,apart from the 

three assertions, only use has been made of the fact that matrix 

r(Ai-AiI,Ci,ni ) could be written as: 

I 
~lkl 

x x x 
~~ 

x x I 
0 ~lkl 

x x 0 ~lk2 • x I 
I 

0 0 ~lkl 
x 0 0 x I 

• • I 
I 

0 • ~~I 
0 ~lkl 0 • 0 

where ~ denotes any column vector, which is irrelevant for the 

proof. In case we deal with cages in the form of (2.54) we get: 

I 
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~lk1 
x x • x 

~~ 
x x 

a 2Ai~lk1 a 2~~ x 

a a 2Ai~lk1 a a 2Ai~lk2 • • 

• 

a • 

a 
a 

• 

• 

• 

• 

and now also r(Ai-AiI,Ci,ni)·~ ~ ~ will always give ~~ unless 

Aima• 

The situation where Ai = a gives rise to an exception, which we 

will discuss in the next section. 

We may say now that the criterion for complete observabi1ity can 

also be applied to the system (A~,B,C), that's to say, the system 

(A~,B,C) is completely observable (controllable) if the system 

(A,B,C) is completely observable (controllable), apart from two 

exceptions, which may disturb this: 

1. The Jordan structure has been changed because A~ - A~ for 
i j 

some i#j 

2. Ai = a for some i 

In section 2.2.2. we have seen that the Jordan structure of the 

matrix A is completely defined by all numbers nij i-l,v 

j=l,r(i) 

From the remarks in this section the conclusion can be drawn that 

the complete observability of (A~,B,C) for sure is preserved if 

all numbers nij of A and A~ are the same. In this situation 

applying the criterion of observability to A,C and A~,C will lead 

to exactly the same results. 

Problems may arise when the Jordan structure of A and A~ are not 

the same. This will be dealt with in the next section. 

• 

• 
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2.3.2. SITUATIONS OF NONOBSERVABILITY 

The Jordan cage structure of A~ and A will not be the same 

in the following 

a) A~ = A~ 
i j 

situations 

for some i n j. while Ai ' Aj 

b) Ai - 0 for some i 

(2.56) 

(2.57) 

Ad a) In this case two originally different eigenvalues of A 

will be transformed into two equal eigenvalues of A~. This 

means that the number of distinct eigenvalues v in A is 

decreased for A~ by one to v-l • and that two Jordan blocks 

are linked up into one block. 

For complete observability of the system the set of r(i) 

q-dimensional column vectors £lil.£li2 ••••••• £lir(l) has to 

be a linearly independent set. When two Jordan blocks are 

linked up • r(i) increases and the condition of independence 

of the relevant column vectors of C has to be investigated 

again. 

The independence of the new set of r(i) vectors is the only 

criterion for observability of (A~.B.C). 

k 
Ad b) From Ai-O it follows that Ai - 0 for all k. 

In case ~ is sufficiently large (~ > nij) we are dealing 

with the situation as in equation (2.45a). This leads to a 

matrix A~ that Is completely filled with zero's: A~ - ~. 

What originally were r(i) Jordan cages .each with dimensions 

nij.j=l.r(i). now become ni -~~i)nij Jordan cages of length 

1. 

In other words all zero eigenvalues of A become noncommon 

zero eigenvalues of A~. 

For observability the criterion of independence of the set of 

r(i) vectors of C becomes a criterion of independence of ni 

column vectors in case of A~. 

This new criterion has to be tested again. It is clear that 

the criterion in the latter case can only be fulfilled if 

q) ni' 
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~ In case ~ is smaller than nij the matrix Aij becomes: 

0 0 0 1 0 • • 0 

0 0 0 0 1 0 0 

• • • • • 
~ 1 0 Aij = • • • • 

0 • • • 0 1 

• • • • 0 

1 · • • • • • • 
0 • • • • 0 

Here the latter w rows indicate the w quasi non common poles 

we have got in the system A~. This gives rise to a 

different Jordan form again, where we get w cages in stead of 

originally one. This can be accomplished by a suitable 

transformation matrix T, which just interchanges some 

states. Once this has been done, the criterion of Chen and 

DeBoer may be applied again, which extends the relevant set 

with the columns of C corresponding to the indicated w 

states. 

Example: 

A = 

o 
o 
o 
o 

1 

o 
o 
o 

o 
1 

o 
o 

o 
o 
1 

o 

interchange state 2 and 3: 

1 

T 

o 
o 
1 

o 

o 
1 

o 
o 

o 
o 
o 
1 

+ A~:-

o 
o 
o 
o 

o 
o 
o 
o 

o 
o 
o 
o 

1 

o 
o 
o 

1 

o 
o 
o 

o 
o 
o 
o 

o 
1 

o 
o 

o 
o 
1 

o 
In both situations a) and b) the complete observability of 

(A~,B,C) is determined by the (in)dependence of some 

specific column vectors of C. 
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2.3.3. REPLACEMENT OF POLES IN THE Z-DOMAIN 

In this section we want to make clear in which situations the 

problem of nonobservability of (A~,B,C) arises. 

As mentioned in the previous section two situatiions can be 

distinguished: 

a) A~ = Aj for i 11 j 

b) Ai = 0 for some i 

Situation b) is very clear: a single pole in z = 0 will cause 

no problems because the Jordan structure of A~ remains the 

same as the one for A. 

Two or more common poles in z = 0 may cause nonobservability 

depending on C ,because they are transformed top noncommon 

poles for A~ these non common poles can be non-

distinguishable. 

Situation a) may occur e.g. when Ai • -Aj. Then for all 

even ~ holds: 

A~ (-A)~ 
i j 

jJ even 

1.% > 0 as shown in Fig. 2.1. 

z~ 
1 

z~ 
2 

Fig.2.1. 

Z 
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A second possibility is thst Ai and Aj are a complex 

conjugated pair z1,2 ~ re±j~ and ~~ ~ kw ,k E Z (see 

Fig.2.2.). 

Fig.2.2. 

z~ 
1 

z~ 
2 

z 

And evidently all combinations of the two examples may 

occur. Notice that the final conclusion on observability of 

(A~,B,C) can only be drawn when knowing C. The described 

situations are the exclusive possibilities in which 

nonobservability might happen. 

Besides, situation a) can sometimes be avoided if all poles 

are in the right half plane (high sampling rate) and by 

choosing ~ small enough. Situation b) may be eliminated by 

excluding delays and finite responses. 

2.4. REMARKS 

For purpose of clearity the results of this chapter are 

briefly stated again: 

Given an observable system (A,B,C). 
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The system (A~,B,C) is completely observable, if condition 

F does not hold: 

F l)for some i: Ai = 0 and rei) > 1 or 

for some iDj: Ai ~ A~ 

and 2) for each i the set of rei) q-dimensional column 

vectors ~lil'~li2' ••• '~lir(i) of the rearranged 
Jordan form for A~ ,which are the columns of C 

corresponding to the independent states, i8 a 

linearly dependent set. 

assuming that Ai and Aj are distinct eigenvalues of A. 

If (A~,B,C) is completely observable then the Ho-Kalman 

algorithm applied to the Page matrix will lead to a minimum 

realization. 

It should be noted that condition F, as stated above ,will 

generally not hold in the noisy case, because it lays quite 

heavy restrictions on the positions of the poles of A. 

In general one can state that the situations in which the 

Page matrix algorithm will not give a minimum realization 

appear seldom. Nevertheless in esse Ai ~ A~ and/or Ai~ 0 , 

this might be a cause that the resulting solution is i11-

conditioned. 

A dual situation arises when the Chinese page matrix is 

subject of study. In stead of the observabi1ity of the 

system, the controllability now is the critical feature. Then 

in stead of the matrix C matrix B is more essential. This 

dual approach can be a good alternative if (A~,B,C) is an 

nonobservable but controllable system. The Ho-Kalman 

algorithm applied to the Chinese page matrix then will lead 

to a minimum realization. 
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3. CONCLUS IONS 

A Page matrix has been proposed as an alternative to the Hankel 

matrix in the realization problem. 

In the deterministic case the size of the Page matrix may be chosen 

much smaller than the size of the Hankel matrix, which implies a 

significant reduction in computation. 

The Page matrix is especially superior in the noisy case, due to 

three consecutive steps: 

The order testing: the decision concerning the dimension of 

the system, based on the singular values of the Page matrix, 

is straightforward, since all noisy data appear only once in 

the Page matrix. In cases of SWAYING noise, the non-relevant 

singular values are independent, which is not the case for the 

Hankel matrix (see appendix). 

The noise filtering by omitting the non-relevant singular 

values: there is a constant weighting factor for the Markov 

parameters and the total reduction equals n/min(h,m), which is 

optimal for a square Page matrix. 

The approximate realization: the noise filtering provides us 

directly with a set of unique Markov parameters in the 

approximated Page matrix of rank n, contrary to the situation 

for the Hankel matrix. This proves that we have reduced the 

information to the proper degree of freedom by using the Page 

matrix. Then the realization is straightforward, as in the 

deterministic case. In the approximated Hankel matrix H, 

however, a number of superfluous degrees of freedom is still 

implicitly incorporated. These are eliminated during the 

realization fase, be it in an uncontrolled and inadequate 

way. 

Preliminary practical tests confirm the above theoretical 
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expectations and we hope to present these results in a subsequent 

paper. 

Finally, we are also optimistic about the use of the Page Matrix 

for the stochastic realization, where estimates of covariances are 

replacing the Markov parameters. Here the problem is that the 

uncertainties of the estimated covariances are far from independent 

and stationary. 
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APPENDIX 

The statistical behaviour of the singular values of a Hankel 

matrix, built up by noise corrupted Markov parameters, i. a special 

case of the situation where all elements of a matrix have 

independent, additive noise, like the Page matrix. In the Hankel 

matrix the Markov parameters appear repeatedly and thus the noise 

cannot be considered as being independent. Nevertheless this 

independency makes it easy to study the behaviour so that we will 

first study the noise contaminated Page matrix. 

Assume a Page matrix P with dimensions h • m, composed of L-1 

deterministic Markov parameters, all disturbed by SWAYING noise 

with variance a2 (see sect. 1.2). The deterministic Markov 

parameters construct a deterministic Page matrix P, so the 

following can be written: 

p P + :p 

• If h ( m we continue with P 

where =p is the matrix 
containing all noise samples • 

pT;in the opposite esse a dual 

version may be derived by means of pTp. 

Because of the character of the noise, E(:p) will be zero, and 

E {:p::! = m. a2 Ih 

As a result: 

We can state that P - U D vT
, and also ma2 Ih - U(ma2I h)uT 

because of the diagonal character of this matrix and the 

orthonormality of U. 

Therefore we can write: 
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Generally, for all possible (h,m) a description can be given for 

the matrix D, the diagonal matrix of the singular values of P: 

Although for the Hankel matrix the noise elements appear more 

frequently, the structure is such that it does not violate the 

steps used above. So the same conclusion can be made concerning 

the Hankel matrix. Note, however, that for the Hankel matrix the 

actual non-relevant singular values are highly dependent. 
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